精英家教网 > 高中数学 > 题目详情
6.已知双曲线C:$\frac{x^2}{a}$-$\frac{y^2}{4}$=1(a>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点为F,点F在渐近线上的射影为M,O为坐标原点,则$\overrightarrow{OF}$•$\overrightarrow{MF}$=(  )
A.1B.2C.3D.4

分析 运用离心率公式解方程可得a=9,求得双曲线方程及渐近线方程,运用向量数量积的定义,可得$\overrightarrow{OF}$•$\overrightarrow{MF}$=|$\overrightarrow{OF}$|•|$\overrightarrow{MF}$|•cos∠OFM,运用F到渐近线的距离,即可得到所求值.

解答 解:由题意可得e=$\frac{\sqrt{a+4}}{\sqrt{a}}$=$\frac{\sqrt{13}}{3}$,
可得a=9,双曲线的方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,焦点F($\sqrt{13}$,0),
则$\overrightarrow{OF}$•$\overrightarrow{MF}$=|$\overrightarrow{OF}$|•|$\overrightarrow{MF}$|•cos∠OFM=|$\overrightarrow{MF}$|2
由F到渐近线y=-$\frac{2}{3}$x的距离为|MF|=$\frac{2\sqrt{13}}{\sqrt{4+9}}$=2,
则$\overrightarrow{OF}$•$\overrightarrow{MF}$=4.
故选D.

点评 本题考查双曲线的方程和性质,主要是渐近线方程的运用,同时考查向量的数量积的定义和计算,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知不等式ax2+bx+2>0的解集为(-1,2),则a+b的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足不等式$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,若M=3x+y,N=($\frac{1}{2}$)x$-\frac{7}{2}$,则(  )
A.M>NB.M=NC.M<ND.M+N=11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:A(1,3),B(3,7),C(6,0),D(8,-1),求证:$\overrightarrow{AB}⊥\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E,F分别是A1C1,BC的中点.
(1)证明:C1F∥平面ABE;
(2)设P是BE的中点,求三棱锥P-B1C1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(Ⅰ)证明:BD⊥平面A1CO;
(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给定命题p:若x2≥0(x∈R),则x≥0;命题q:?x∈R,2x-1>0.下列命题中,假命题是(  )
A.p∨qB.(¬p)∨qC.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设等比数列{an}的前n项和为Sn,若a2=3,且a2015+a2016=0,则S101等于(  )
A.3B.303C.-3D.-303

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行下面的程序框图,若输入x=5,y=4,则输出的有序数对为(  )
A.(8,9)B.(9,10)C.(10,11)D.(11,12)

查看答案和解析>>

同步练习册答案