精英家教网 > 高中数学 > 题目详情
19.如图,在△ABC中,D为BC的中点,E,F为AD上的两个三等分点.若$\overrightarrow{BE}•\overrightarrow{CE}=\frac{7}{8}$,$BC=\frac{{\sqrt{26}}}{2}$,则$\overrightarrow{BF}•\overrightarrow{CF}$=-$\frac{17}{8}$.

分析 根据向量的加减的几何意义和向量的数量积即可求出.

解答 解:D为BC的中点,E,F为AD上的两个三等分点,
∴$\overrightarrow{BE}$=$\overrightarrow{BD}$+$\overrightarrow{DE}$,$\overrightarrow{CE}$=-$\overrightarrow{BD}$+$\overrightarrow{DE}$,
∴$\overrightarrow{BE}$•$\overrightarrow{CE}$=${\overrightarrow{DE}}^{2}$-${\overrightarrow{BD}}^{2}$=$\frac{7}{8}$,
∴$\overrightarrow{DE}$2=$\frac{7}{8}$+$\frac{13}{4}$=$\frac{33}{8}$,
∵$\overrightarrow{BF}$=$\overrightarrow{BD}$+$\overrightarrow{DF}$=$\overrightarrow{BD}$+$\frac{1}{2}$$\overrightarrow{DE}$,$\overrightarrow{CF}$=-$\overrightarrow{BD}$+$\frac{1}{2}$$\overrightarrow{DE}$,
∴$\overrightarrow{BF}$•$\overrightarrow{CF}$=$\frac{1}{4}$${\overrightarrow{DE}}^{2}$-${\overrightarrow{BD}}^{2}$=$\frac{1}{4}$×$\frac{33}{8}$-$\frac{13}{4}$=-$\frac{17}{8}$,
故答案为:-$\frac{17}{8}$.

点评 本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|2x+2|+|2x-4|.
(1)求不等式f(x)>8的解集;
(2)若存在x∈R,使不等式f(x)≤|2m-3|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(  )
A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}满足a2=2,an+2+(-1)n+1an=1+(-1)n(n∈N*),S n为数列{an}前n项和,S100=(  )
A.5100B.2550C.2500D.2450

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调查了某地区的100个捐款居民每月平均的经济收入.在捐款超过100元的居民中,每月平均的经济收入没有达到2000元的有60个,达到2000元的有20个;在捐款不超过100元的居民中,每月平均的经济收入没有达到2000元的有10个.
(Ⅰ)在下图表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否超过100元和居民每月平均的经济收入是否达到2000元有关?
(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量居民中,采用随机抽样方法每次抽取1个居民,共抽取3次,记被抽取的3个居民中经济收入达到2000元的人数为X,求P(X=2)和期望EX的值.
每月平均经济收入达到2000元每月平均经济收入没有达到2000元合计
捐款超过
100元
捐款不超
过100元
合计



 当x2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
 当x2>2.706时,有90%的把握判定变量A,B有关联;
 当x2>3.841时,有95%的把握判定变量A,B有关联;
 当x2>6.635时,有99%的把握判定变量A,B有关联.
附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①“若x0为y=f(x)的极值点,则f′(x0)=0”的逆命题为真命题;
②“平面向量$\overrightarrow a$,$\overrightarrow b$的夹角是钝角”的充分不必要条件是$\overrightarrow a•\overrightarrow b<0$
③若命题$p:\frac{1}{x-1}>0$,则$?p:\frac{1}{x-1}≤0$;
④命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1≥0”.
其中不正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.偶函数f(x)是定义域为R上的可导函数,当x≥0时,都有f'(x)<2x成立,则不等式f(x-1)+2x>f(x)+1的解集是(  )
A.$\left\{{\left.x\right|x<\frac{1}{2}}\right\}$B.$\left\{{\left.x\right|x>\frac{1}{2}}\right\}$C.{x|x≠$\frac{1}{2}$}D.实数集R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为(  )
A.$\frac{16}{3}(π+1)$B.$\frac{8}{3}(2π+1)$C.8(2π+1)D.16(π+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.历史上有人用向画有内切圆的正方形纸片上随机撒芝麻,用随机模拟方法来估计圆周率的值.如果随机向纸片撒一把芝麻,1000粒落在正方形纸片上的芝麻中有778粒落在正方形内切圆内,那么通过此模拟实验可得π的估计值为3.112.

查看答案和解析>>

同步练习册答案