精英家教网 > 高中数学 > 题目详情
8.已知$\frac{a+i}{i}$=b+2i(a,b∈R),其中为虚数单位,则a-b=(  )
A.-3B.-2C.-1D.1

分析 由$\frac{a+i}{i}$=b+2i,得a+i=-2+bi,再由复数相等的条件列式求得a,b的值,则答案可求.

解答 解:由$\frac{a+i}{i}$=b+2i,得a+i=-2+bi,
∴a=-2,b=1,
则a-b=-3.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点M(0,$\sqrt{3}$)与点F2的连线交C于点N,且N是线段MF2的中点,F1N⊥MF2,则C的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}+2}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的方程$\frac{lnx}{x}$-a=0(e为自然对数的底数)有两个实数根,则实数a的取值范围是(-∞,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+4x+c的最小值为-1,且对任意x都有f(-2+x)=f(-x)
(1)求函数f(x)的解析式;
(2)设g(x)=f(-x)-λf(x)+1,λ<1,若g(x)在[-2,2]上是减函数,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z,满足z(1+3i)=10i,则z的虚部为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”它体现了一种无限与有限转化过程,比如在表达式1$+\frac{1}{1+\frac{1}{1+…}}$中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1$+\frac{1}{x}$=x(x>0)求得x=$\frac{1+\sqrt{5}}{2}$,类似上述过程,则 $\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=2,n=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是(  )
A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=8D.(x-1)2+y2=8

查看答案和解析>>

同步练习册答案