精英家教网 > 高中数学 > 题目详情
18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,点M(0,$\sqrt{3}$)与点F2的连线交C于点N,且N是线段MF2的中点,F1N⊥MF2,则C的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}+2}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

分析 运用F1N为MF2的垂直平分线,可得|MF1|=|F1F2|=2c,由对称性可得|MF2|=|MF1|=2c,|NF2|=c,|NF1|=$\sqrt{4{c}^{2}-{c}^{2}}$=$\sqrt{3}$c,再由双曲线的定义和离心率公式,计算即可得到所求值.

解答 解:N是线段MF2的中点,F1N⊥MF2
可得F1N为MF2的垂直平分线,
可得|MF1|=|F1F2|=2c,
由对称性可得|MF2|=|MF1|=2c,
|NF2|=c,|NF1|=$\sqrt{4{c}^{2}-{c}^{2}}$=$\sqrt{3}$c,
则2a=|NF1|-|NF2|=$\sqrt{3}$c-c,
可得e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=1+$\sqrt{3}$.
故选:D.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和线段的垂直平分线、勾股定理,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.命题“?x∈(1,+∞),x3>$\sqrt{x}$”的否定是(  )
A.?x0∈(1,+∞),x03$≤\sqrt{{x}_{0}}$B.?x∈(1,+∞),x3$≤\sqrt{x}$
C.?x0∈(-∞,1],x03≤$\sqrt{{x}_{0}}$D.?x∈(-∞,1],x3≤$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+3,则S5=201.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα+sinβ+sinγ=0和cosα+cosβ+cosγ=0,则cos(α-β)的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线C:y2=2px(p>0)的焦点为F,其准线与x轴的交点为Q,过Q点的直线1交抛物线于A,B两点.
(1)若以AB为直径的圆恰好过点F,求直线1的斜率;
(2)设直线AF,BF与抛物线C的另一个交点分别为D,E,求证:|AB|=|DE|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(2,-$\sqrt{3}$),$\overrightarrow{b}$=(sinθ,1),且θ∈(0,$\frac{π}{2}$),若$\overrightarrow{a}$⊥$\overrightarrow{b}$
(1)求θ的值;
(2)求cos($\frac{θ}{2}$+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某企业准备投入适当的广告费对产品进行促销,在一年内预计销售量Q(万件)与广告费x(万元)之间的函数关系为Q=$\frac{3x-2}{x}$(x>1),已知生产该产品的年固定投入为3万元,每生产1万件该产品另需再投入32万元,若每件销售价为“年平均每件生产成本(生产成本不含广告费)的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(年利润=销售收入-成本)
(2)当年广告费为多少万元时,企业的年利润最大?最大年利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx+$\frac{2a}{x+1}$
(1)求f(x)的单调区间
(2)若x>0时,$\frac{lnx}{x-1}$>$\frac{a}{x+1}$恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\frac{a+i}{i}$=b+2i(a,b∈R),其中为虚数单位,则a-b=(  )
A.-3B.-2C.-1D.1

查看答案和解析>>

同步练习册答案