| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{\sqrt{3}+2}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}$+1 |
分析 运用F1N为MF2的垂直平分线,可得|MF1|=|F1F2|=2c,由对称性可得|MF2|=|MF1|=2c,|NF2|=c,|NF1|=$\sqrt{4{c}^{2}-{c}^{2}}$=$\sqrt{3}$c,再由双曲线的定义和离心率公式,计算即可得到所求值.
解答
解:N是线段MF2的中点,F1N⊥MF2,
可得F1N为MF2的垂直平分线,
可得|MF1|=|F1F2|=2c,
由对称性可得|MF2|=|MF1|=2c,
|NF2|=c,|NF1|=$\sqrt{4{c}^{2}-{c}^{2}}$=$\sqrt{3}$c,
则2a=|NF1|-|NF2|=$\sqrt{3}$c-c,
可得e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=1+$\sqrt{3}$.
故选:D.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和线段的垂直平分线、勾股定理,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈(1,+∞),x03$≤\sqrt{{x}_{0}}$ | B. | ?x∈(1,+∞),x3$≤\sqrt{x}$ | ||
| C. | ?x0∈(-∞,1],x03≤$\sqrt{{x}_{0}}$ | D. | ?x∈(-∞,1],x3≤$\sqrt{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com