精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)是偶函数,且在(0,+∞)上是减函数,证明:函数f(x)在(-∞,0)上是增函数.

分析 根据题意,设-∞<x1<x2<0,那么0<-x2<-x1<+∞.由函数在(0,+∞)上的单调性可得f(-x2)>f(-x1),结合偶函数的性质可得f(x1)<f(x2);由函数单调性的定义即可得证明.

解答 证明:设-∞<x1<x2<0,那么0<-x2<-x1<+∞.
由于偶函数在(0,+∞)上是减函数,故有:f(-x2)>f(-x1
又根据偶函数的性质可得:f(-x1)=f(x1),f(-x2)=f(x2
综上可得:f(x1)<f(x2);
故f(x)在(-∞,0)上是减函数.

点评 本题主要考查函数奇偶性与单调性的综合问题,涉及函数单调性的证明,关键是运用偶函数的性质进行转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的函数f(x)=|x+a|+|x|.
(Ⅰ)当a=1时,解不等式f(x)≥2;
(Ⅱ)若存在x∈R,使得f(x)<2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图在边长为2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E为PA的中点.(1)求证:平面EBD⊥平面ABCD; 
(2)求点E到平面PBC的距离;
(3)求二面角A-EB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x)是偶函数,y=g(x)的奇函数,它们的定义域为[-π,π],且它们在x∈[0,π]上的图象如图所示,则不等式$\frac{f(x)}{g(x)}>0$的解集为$(-π,-\frac{π}{3})∪(0,\frac{π}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,2]}\\{lo{g}_{2}x,x∈(2,+∞)}\end{array}\right.$,则满足f(x)=3的x的值是(  )
A.log23B.8C.log23或8D.8或6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过圆x2+y2=1上任意一点P作x轴的垂线PN,垂足为N,则线段PN的中点M的轨迹方程为x2+4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|x-1|+|x-3|.
(1)解关于x的不等式f(x)≤4;
(2)若f(x)>m2+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,且所有棱长都相等.平面A1BC1∩平面ABC=l,则直线l与AB1所成角的余弦值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$的实数λ有2个.

查看答案和解析>>

同步练习册答案