精英家教网 > 高中数学 > 题目详情
19.已知命题p:x2+2x-3>0,命题q:x>a,若¬q的一个充分不必要条件是¬p,则实数a的取值范围是(  )
A.a≥1B.a>1C.a≥-3D.a>-3

分析 由p转化到?p,求出?q,然后解出a.

解答 解:由p:x2+2x-3>0,知 x<-3或x>1,则?p为-3≤x≤1,?q为x≤a,又?p是?q的充分不必要条件,所以a≥1.
故选:A.

点评 本题考查了四种命题的转化,二次不等式的解法,充要条件的判定都制约本题结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.半径为r的圆的面积S(r)πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr;对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于上述的式子:$(\frac{4}{3}π{R^3})'=4π{R^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列说法:
①已知α为第二象限角,则$\frac{α}{2}$为第一或第三象限角;
②已知λ为实数,$\overrightarrow a$为平面内任一向量,则$λ\overrightarrow a$的模为$λ|{\overrightarrow a}|$;
③△ABC中,若tanA•tanC>1,则△ABC为锐角三角形;
④已知O为△ABC所在平面内一点,且$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}=\overrightarrow{OC}•\overrightarrow{OA}$,则点O是△ABC的重心.则正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.x>0,y>0,且$\frac{1}{x+1}$+$\frac{1}{y+1}$=$\frac{1}{2}$,则xy的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数$f(x)=cos(-\frac{x}{2})+cos(\frac{4k+1}{2}π-\frac{x}{2})\;,\;k∈Z\;,\;x∈R$.
(1)求f(x)的周期;
(2)f(x)在[0,π)上的减区间;
(3)若f(α)=$\frac{{2\sqrt{10}}}{5}$,$α∈(\;0\;,\;\frac{π}{2})$,求$tan(2α+\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=sin(ωx+ϕ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,若其图象向右平移$\frac{π}{3}$个单位后关于y轴对称,则y=f(x)对应的解析式为  (  )
A.y=sin(2x-$\frac{π}{6}$)B.y=sin(2x+$\frac{π}{3}$)C.y=sin($\frac{1}{2}$x+$\frac{π}{6}$)D.y=sin($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,已知点P(0,1),Q(0,2),椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知y=$\frac{1}{a{x}^{2}+ax+3}$的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.化简:$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{tan(π-α)sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$=1.

查看答案和解析>>

同步练习册答案