精英家教网 > 高中数学 > 题目详情
19.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如表:
推销员编号12345
工作年限x年35679
推销金额y万元23345
(1)求年推销金额y关于工作年限x的线性回归方程;
(2)若第6名产品推销员的工作年限为11年,试估计他的年推销金额.
参考公式:$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline{.y}}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.

分析 (1)首先求出x,y的平均数,利用最小二乘法做出b的值,再利用样本中心点满足线性回归方程和前面做出的横标和纵标的平均值,求出a的值,写出线性回归方程.
(2)第6名推销员的工作年限为11年,即当x=11时,把自变量的值代入线性回归方程,得到y的预报值,即估计出第6名推销员的年推销金额为5.9万元.

解答 解:(1)设所求的线性回归方程为 $\widehaty=\widehatbx+\widehata,\overline x=6,\overline y=3.4$,…(4分)
则$\widehatb=\frac{{\sum_{i=1}^5{{x_i}{y_i}-5\overline x\overline y}}}{{\sum_{i=1}^5{x_i^2-5{{\overline x}^2}}}}=\frac{112-5×6×3.4}{{200-5×{6^2}}}=0.5$,$\widehata=\overline y-\widehatb\overline x=0.4$.…(7分)
所以年推销金额y关于工作年限x的线性回归归方程为$\widehaty=0.5x+0.4$.…(8分)
(2)当x=11时,y=0.5x+0.4=0.5×11+0.4=5.9(万元).
所以可以估计第6名推销员的年推销金额为5.9万元.

点评 本题考查回归分析的初步应用,考查利用最小二乘法求线性回归方程,是一个综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知离心率为$\frac{\sqrt{3}}{3}$的椭圆Ω:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点分别为F1,F2,过点F1的直线与椭圆Ω相交于A,B两点,△F2AB的周长为8$\sqrt{3}$.
(1)求椭圆Ω的标准方程.
(2)过点F2且斜率为k的直线l与椭圆Ω相交于M,N两点,P点的坐标为(m,0),以PM、PN为邻边的平行四边形为菱形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根据下列图案中的圆圈排列规则,猜想第5个图形中的圆圈个数为21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.四个男同学和三个女同学站成一排照相,计算下列情况各有多少种不同的站法?
(1)男生甲必须站在两端;
(2)女生乙不能站在女生丙的左边;
(3)女生乙不站在两端,且女生丙不站在正中间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=-x2-kx+2lnx-k+3.
(1)当k=0时,其f(x)的单调区间及最大值;
(2)若不等式f(x)>0仅存在一个整数解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{x-1}{{lnx-m{x^2}}}$,m∈R.
(Ⅰ)若1<x<2时,f(x)>1恒成立,求m的取值范围;
(Ⅱ)若m=0时,令an+1=f(an),n∈N*,a1=$\sqrt{e}$,求证:2nlnan≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{{41\sqrt{41}π}}{48}$B.12πC.$\frac{25π}{4}$D.$\frac{41π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立坐标系,曲线C2的极坐标方程是ρ=4sinθ.
(Ⅰ)求曲线C1与C2交点的坐标;
(Ⅱ)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.若f(x)的零点组成集合A≠∅,g(f(x))的零点组成集合B,A=B.
(1)求d的值;
(2)若a=0,求c的取值范围.

查看答案和解析>>

同步练习册答案