分析 (Ⅰ)求出曲线C1与C2的普通方程,即可求曲线C1与C2交点的坐标;
(Ⅱ)由平面几何知识可知,当A,C1,C2,B依次排列且共线时,|AB|最大,此时|AB|=2$\sqrt{2}$+4,O到AB的距离为$\sqrt{2}$,即可求△OAB的面积.
解答 解:(Ⅰ)由$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),得曲线C1的普通方程为(x+2)2+y2=4;
由曲线C2的极坐标方程是ρ=4sinθ,得曲线C2的直角方程是x2+y2=4y,
把两式作差得y=-x,
代入x2+y2=4y,得到交点坐标为(0,0),(-2,2);
(Ⅱ)由平面几何知识可知,当A,C1,C2,B依次排列且共线时,|AB|最大,
此时|AB|=2$\sqrt{2}$+4,O到AB的距离为$\sqrt{2}$,
∴△OAB的面积S=$\frac{1}{2}×(2\sqrt{2}+4)•\sqrt{2}$=2+2$\sqrt{2}$.
点评 本题考查参数方程、极坐标方程与普通方程的互化,考查三角形面积的计算,考查学生的计算能力,比较基础.
科目:高中数学 来源: 题型:解答题
| 推销员编号 | 1 | 2 | 3 | 4 | 5 |
| 工作年限x年 | 3 | 5 | 6 | 7 | 9 |
| 推销金额y万元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 20 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x,y∈R,若x≠0或y≠0,则xy≠0 | B. | ?x,y∈R,若x≠0且y≠0,则xy≠0 | ||
| C. | ?x,y∈R,若x≠0或y≠0,则xy≠0 | D. | ?x,y∈R,若x≠0且y≠0,则xy≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20≤x≤30 | B. | 20≤x≤45 | C. | 15≤x≤30 | D. | 15≤x≤45 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com