精英家教网 > 高中数学 > 题目详情
20.书架上有2本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为$\frac{1}{6}$.

分析 先求出基本事件总数,求出取出的两本书都是数学书包含的基本事件个数,由此能求出取出的两本书都是数学书的概率.

解答 解:∵书架上有2本数学书,2本物理书,
从中任意取出2本,基本事件总数n=${C}_{4}^{2}$=6,
则取出的两本书都是数学书包含的基本事件个数m=${C}_{2}^{2}$=1,
∴取出的两本书都是数学书的概率p=$\frac{m}{n}$=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.根据下列图案中的圆圈排列规则,猜想第5个图形中的圆圈个数为21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体三视图如图所示,则该几何体的外接球的表面积为(  )
A.$\frac{{41\sqrt{41}π}}{48}$B.12πC.$\frac{25π}{4}$D.$\frac{41π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立坐标系,曲线C2的极坐标方程是ρ=4sinθ.
(Ⅰ)求曲线C1与C2交点的坐标;
(Ⅱ)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两个不相等的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$,$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$,$\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排列而成,记S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值.则下列命题正确的是 (  )
①S有5个不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{a}$|无关;
③若$\overrightarrow{a}$∥$\overrightarrow{b}$,则Smin与|$\overrightarrow{b}$|无关;
④若|$\overrightarrow{b}$|>4|$\overrightarrow{a}$|,则Smin>0;
⑤若|$\overrightarrow{b}$|=4|$\overrightarrow{a}$|,Smin=8|$\overrightarrow{a}$|2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时,f(x)=328.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≤0\\ lnx,x>0\end{array}$.
(1)计算f(0)、f(1);
(2)画出输入自变量x,输出函数值f(x)的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.若f(x)的零点组成集合A≠∅,g(f(x))的零点组成集合B,A=B.
(1)求d的值;
(2)若a=0,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{{x}^{2}+2x+a}{x}$,若对于任意x∈[1,+∞),f(x)>0恒成立,则a的取值范围是(  )
A.[-3,3)B.[-3,+∞)C.(-3,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案