1£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬Èô¶ÔÈÎÒâx1¡Ùx2£¬¶¼ÓÐx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©+x2f£¨x1£©£¬Ôò³Æf£¨x£©Îª¡°Hº¯Êý¡±£¬¸ø³öÏÂÁк¯Êý£º¢Ùy=-x2+x+1£»¢Úy=3x-2£¨sinx-cosx£©£»¢Ûy=ex+1£»¢Üf£¨x£©=$\left\{\begin{array}{l}{|lnx|£¬x¡Ù0}\\{0£¬x=0}\end{array}\right.$ÆäÖС°Hº¯Êý¡±µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

·ÖÎö ²»µÈʽx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©+x2f£¨x1£©µÈ¼ÛΪ£¨x1-x2£©[f£¨x1£©-f£¨x2£©]£¾0£¬¼´Âú×ãÌõ¼þµÄº¯ÊýΪµ¥µ÷µÝÔöº¯Êý£¬ÅжϺ¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º¡ß¶ÔÓÚÈÎÒâ¸ø¶¨µÄ²»µÈʵÊýx1£¬x2£¬²»µÈʽx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©+x2f£¨x1£©ºã³ÉÁ¢£¬
¡à²»µÈʽµÈ¼ÛΪ£¨x1-x2£©[f£¨x1£©-f£¨x2£©]£¾0ºã³ÉÁ¢£¬
¼´º¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÔöº¯Êý£®
¢Ùy=-x2+x+1µÄ¶Ô³ÆÖáÊÇx=$\frac{1}{2}$£¬Ôòº¯ÊýÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£¬²»Âú×ãÌõ¼þ£®
¢Úy=3x-2£¨sinx-cosx£©£»y¡ä=3-2£¨cosx+sinx£©=3-2$\sqrt{2}$sin£¨x+$\frac{¦Ð}{4}$£©£¾0£¬º¯Êýµ¥µ÷µÝÔö£¬Âú×ãÌõ¼þ£®
¢Ûy=ex+1ΪÔöº¯Êý£¬Âú×ãÌõ¼þ£®
¢Üf£¨x£©=$\left\{\begin{array}{l}ln|x|{\;}_{\;}^{\;}£¬x¡Ù0\\ 0{\;}_{\;}^{\;}{\;}_{\;}^{\;}£¬x=0\end{array}$£®µ±x£¾0ʱ£¬º¯Êýµ¥µ÷µÝÔö£¬µ±x£¼0ʱ£¬º¯Êýµ¥µ÷µÝ¼õ£¬²»Âú×ãÌõ¼þ£®
×ÛÉÏÂú×ã¡°Hº¯Êý¡±µÄº¯ÊýΪ¢Ú¢Û£¬
¹ÊÑ¡£ºC£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯Êýµ¥µ÷ÐÔµÄÓ¦Ó㬽«Ìõ¼þת»¯Îªº¯ÊýµÄµ¥µ÷ÐÔµÄÐÎʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{aln£¨x+1£©£¬x¡Ý0}\\{\frac{1}{3}{x}^{3}-ax£¬x£¼0}\end{array}\right.$g£¨x£©=ex-1£¬º¯Êýy=f£¨x£©µÄͼÏóÔڵ㣨1£¬f£¨1£©£©Óëµã£¨-1£¬f£¨-1£©£©´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª|$\overrightarrow{a}$|=$\sqrt{2}$£¬|$\overrightarrow{b}$|=2£®
£¨1£©Èô$\overrightarrow{a}$¡¢$\overrightarrow{b}$µÄ¼Ð½ÇΪ45¡ã£¬Çó|$\overrightarrow{a}$+$\overrightarrow{b}$|
£¨2£©Èô£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©¡Í$\overrightarrow{a}$£¬Çó$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¸ø¶¨ÃüÌ⣺p£ºx£¼3£¬q£º$\frac{3-x}{x-2}$£¾0£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
A£®³ä·Ö±ØÒªÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®±ØÒª²»³ä·ÖÌõ¼þD£®¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ò»×éÊý¾Ýx1£¬x2£¬¡­£¬x5µÄƽ¾ùÊýΪ5£¬x${\;}_{1}^{2}$£¬x${\;}_{2}^{2}$£¬¡­£¬x${\;}_{5}^{2}$µÄƽ¾ùÊýΪ33£¬ÔòÊý¾Ýx1£¬x2£¬¡­£¬x5µÄ·½²îΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬Èôa+b¡Ý2c£¬Ôò¡ÏCµÄ×î´ó¶ÈÊýÊÇ£¨¡¡¡¡£©
A£®30¡ãB£®60¡ãC£®120¡ãD£®150¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬a${\;}_{n+1}^{2}$-${a}_{n}^{2}$=2£¨n¡ÊN*£©£®
£¨1£©ÈôÊýÁÐ{an}ÖеÄÿһÏî¾ùΪÕýÊý£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãbn=$\frac{{a}_{n}^{2}}{{2}^{n}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªcos2a=$\frac{1}{3}$£¨cosa+sina£©£¬Ôòcosa-sina=¡À$\sqrt{2}$»ò$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ô²ÖùÐβ£Á§±­¸ß8cm£¬±­¿ÚÖܳ¤Îª12cm£¬Äڱھ౭¿Ú2cmµÄµãA´¦ÓÐÒ»µãÃÛÌÇ£®AµãÕý¶ÔÃæµÄÍâ±Ú£¨²»ÊÇAµãµÄÍâ±Ú£©¾à±­µ×2cmµÄµãB´¦ÓÐһС³æ£®ÈôС³æÑر­±ÚÅÀÏòÃÛÌDZ¥Ê³Ò»¶Ù£¬×îÉÙÒªÅÀ¶àÉÙ10cm£®£¨²»¼Æ±­±Úºñ¶ÈÓëС³æµÄ³ß´ç£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸