精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°QAD的中点.

(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD

(Ⅱ)点M在线段PC上,PM=tPC,试确定实数t的值,使PA∥平面MQB

(Ⅲ)在(Ⅱ)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

【答案】见解析; ;(60°.

【解析】试题分析:(Ⅰ)证明平面内的直线,垂直平面内两条相交的直线,即可证明平面平面;(Ⅱ)连,由,可得 再由平面推出,即可求出的值;(Ⅲ)以为坐标原点,以 所在的直线为 轴,建立空间直角坐标系,分别求出求出平面与平面的一个法向量,利用向量的夹角公式即可求解.

试题解析:证明:(Ⅰ)连接BD.

因为AD=AB∠BAD=60°

所以△ABD为正三角形.

因为QAD的中点,

所以AD⊥BQ.

因为PA=PDQAD中点,

所以AD⊥PQ.

BQ∩PQ=Q

所以AD⊥平面PQB.

因为

所以平面PQB⊥平面PAD.

(Ⅱ)连接AC,交BQ于点N.

AQ∥BC,可得△ANQ∽△CNB

所以.

因为PA∥平面MQB ,平面PAC∩平面MQB=MN

所以PA∥MN.

所以,即,所以.

(Ⅲ)由PA=PD=AD=2QAD的中点,则PQ⊥AD,又平面PAD⊥平面ABCD

所以PQ⊥平面ABCD.

Q为坐标原点,分别以QAQBQP所在的直线为xyz轴,建立如图所示的坐标系,则A(1,0,0) Q(0,0,0) . .

设平面MQB的法向量为n=(x,y,z)

可得

因为PAMN,所以

z=1,则y=0.

于是.

取平面ABCD的法向量m=(0,0,l)

所以.

故二面角M-BQ-C的大小为60°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 :若 ,则 ,下列说法正确的是( )

A. 命题 的否命题是“若 ,则

B. 命题的逆否命题是“若 ,则

C. 命题是真命题

D. 命题的逆命题是真命题

【答案】D

【解析】A. 命题 的否命题是若

B. 命题的逆否命题是,则

C. 命题是假命题,比如当x=-3,就不满足条件,故选项不正确.

D. 命题的逆命题是若是真命题.

故答案为:D.

型】单选题
束】
9

【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )

A. 充分不必要条件 B. 必要不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a、m满足a= cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7 , 且(a0+a2+a4+a62﹣(a1+a3+a5+a72=37 , 则m=(
A.﹣1或3
B.1或﹣3
C.1
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,顶点A(a,0),B(0,b),中心O到直线AB的距离为
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足: ,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣ ,若Q(λ,μ)为一动点,E1(﹣ ,0),E2 ,0)为两定点,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点 分别是椭圆的左、右顶点.

)求圆和椭圆的方程.

)已知 分别是椭圆和圆上的动点( 位于轴两侧),且直线轴平行,直线 分别与轴交于点 .求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,的中点,的中点.证明:直线平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足不等式组 ,(2,1)是目标函数z=﹣ax+y取最大值的唯一最优解,则实数a的取值范围是(
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求处的切线方程;

(Ⅱ)证明:对任意正数,函数的图像总有两个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求的值;

(2)若,求函数的单调递增区间;

(3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案