【题目】圆周率是圆的周长与直径的比值,一般用希腊字母
表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第7位的人,这比欧洲早了约1000年.生活中,我们也可以通过如下随机模拟试验来估计
的值:在区间
内随机取
个数,构成
个数对
,设
,
能与1构成钝角三角形三边的数对
有
对,则通过随机模拟的方法得到的
的近似值为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(1﹣sinx)ex.
(1)求f(x)在区间(0,π)的极值;
(2)证明:函数g(x)=f(x)﹣sinx﹣1在区间(﹣π,π)有且只有3个零点,且之和为0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)求曲线
的直角坐标方程;
(2)已知点
,若直线
与曲线
交于不同的两点
,当
最大时,求出直线
的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,点![]()
在椭圆![]()
上,且椭圆的离心率为
.
![]()
(1)求椭圆
的标准方程;
(2)记椭圆的左、右顶点分别为
,过点
或
作一条直线交椭圆
于
、
(不与
重合)两点,直线
交于点
,记直线
的斜率分别为
.
①对于给定的
,求
的值;
②是否存在一个定值
使得
恒成立,若存在,求出
值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了
人进行问卷调查,得到这
人对共享单车的评价得分统计填入茎叶图,如下所示(满分
分):
![]()
![]()
(1)找出居民问卷得分的众数和中位数;
(2)请计算这
位居民问卷的平均得分;
(3)若在成绩为
分的居民中随机抽取
人,求恰有
人成绩超过
分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中曲线
的参数方程为
(
为参数),以
为极点,
轴的正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程以及直线
的直角坐标方程;
(2)将曲线
向左平移2个单位,再将曲线
上的所有点的横坐标缩短为原来的
,得到曲线
,求曲线
上的点到直线
的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com