精英家教网 > 高中数学 > 题目详情
7.若|$\overrightarrow{AC}$|=2|$\overrightarrow{CB}$|且$\overrightarrow{AC}$=λ$\overrightarrow{CB}$,则λ=(  )
A.2B.-2C.2或-2D.无法确定

分析 根据条件及向量数乘的几何意义便可得出$|\overrightarrow{AC}|=|λ||\overrightarrow{CB}|$,从而得出|λ|=2,这样便可得出λ的值.

解答 解:$|\overrightarrow{AC}|=2|\overrightarrow{CB}|$,且$\overrightarrow{AC}=λ\overrightarrow{CB}$;
∴$\overrightarrow{AC}$与$\overrightarrow{CB}$同向时,λ=2,反向时,λ=-2;
即λ=±2.
故选:C.

点评 考查向量数乘的几何意义,以及向量长度的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$两条渐近线l1、l2与抛物线y2=-4x的准线l围成区域Ω(包含边界),对于区域Ω内任一点(x,y),若$\frac{y+1}{x+3}$的最大值小于1,则双曲线C的离心率e的取值范围为(1,$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域:
(1)y=$\sqrt{cosx}$;
(2)y=lg(2sinx-1);
(3)y=$\frac{1}{1+sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知角α=-1480°.
(1)将α改写成β+2kπ(k∈Z,0≤β<2π)的形式,并指出α是第几象限的角.
(2)在区间[-4π,0)上找出与α终边相同的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈R,2x<3x;命题q:?x0∈(0,$\frac{π}{2}$),x0=$\sqrt{{x}_{0}}$,则下列命题中,真命题为(  )
A.(¬p)∧qB.p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系xOy中,若x,y满足约束条件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≥0}\\{y≥0}\end{array}\right.$,则z=x+y的最大值为(  )
A.$\frac{7}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知对任何实数x,(x+a)•(x+1)10=a1x11+a2x10+a3x9+…+a11x+2,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求点P(-3,5)关于直线l:3x-4y+4=0的对称点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图).则第8个三角形数是36.

查看答案和解析>>

同步练习册答案