精英家教网 > 高中数学 > 题目详情
已知{an}是公差为2的等差数列,且a3+1是a1+1与a7+1的等比中项.
(1)求数列{an}的通项公式;
(2)令bn=
an-1
2n
(n∈N*),求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列通项公式和等比中项性质,求出数列的首项,由此能求出数列{an}的通项公式.
(2)由bn=
an-1
2n
=
n
2n-1
,利用错位相减法能求出数列{bn}的前n项和Tn
解答: (满分12分)
(1)解:∵{an}是公差为2的等差数列,
∴a3=a1+4,a7=a1+12,(2分)
又a3+1是a1+1与a7+1的等比中项,
∴(a3+1)2=(a1+1)(a7+1),
即(a1+5)2=(a1+1)(a1+13)(4分)
解得:a1=3,∴an=2n+1.(6分)
(2)解:∵bn=
an-1
2n
=
n
2n-1

∴Tn=
1
20
+
2
22
+
3
23
+…+
n
2n-1

1
2
Tn=
1
21
+
2
22
+
3
23
+…+
n-1
2n-1
+
n
2n
(8分)
两式相减得:
1
2
Tn=1+
1
2
+
1
22
+…+
1
2n-1
-
n
2n
(10分)
=2-
2
2n
-
n
2n

Tn=4-
n+2
2n-1
.(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解下列不等式:
(1)|x-1|+|x-2|≥2
(2)3<|5-2x|<9.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出计算1+2+3+…+3000的值的程序框图.并写出计算机程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:2n
-C
1
n
2n-1+
C
2
n
2n-2+…+
C
n-1
n
2+(-1)n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交与D,E.证明:MD⊥ME.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的值.将程序补充完整并将与其功能相同的当型程序框图画出来!
程序:
S=0
I=1
DO
S=
 

 

LOOP UNTIL
 

PRINT S
END
(1)
 

(2)
 

(3)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=ax2-x(a∈R).
(1)求f(x)的单调区间和极值点;
(2)求使f(x)≤g(x)恒成立的实数a的取值范围;
(3)当a=
1
8
时,是否存在实数m,使得方程
3f(x)
4x
+m+g(x)=0
有三个不等实根?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算1×3×5×7×…×99值,要求画上程序框图,写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx(x∈(0,+∞)).
(1)求f(x)的单调区间;
(2)若函数g(x)=2f(x)-blnx+x在x∈[1,+∞)上存在零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案