16£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=4£¬AD=3£¬¡ÏDAB=$\frac{¦Ð}{3}$£¬µãE£¬F·Ö±ðÔÚBC£¬DC±ßÉÏ£¬ÇÒ$\overrightarrow{BE}$=$2\overrightarrow{EC}$£¬$\overrightarrow{DF}$=$\overrightarrow{FC}$£¬Ôò$\overrightarrow{AE}$$•\overrightarrow{BF}$=£¨¡¡¡¡£©
A£®$-\frac{8}{3}$B£®-1C£®2D£®$\frac{10}{3}$

·ÖÎö ÓÉÌõ¼þ±ã¿ÉµÃµ½$\overrightarrow{BE}=\frac{2}{3}\overrightarrow{AD}£¬\overrightarrow{CF}=-\frac{1}{2}\overrightarrow{AB}$£¬¸ù¾ÝÏòÁ¿¼Ó·¨µÄ¼¸ºÎÒâÒå±ã¿ÉµÃµ½$\overrightarrow{AE}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}£¬\overrightarrow{BF}=\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$£¬ÕâÑù¸ù¾ÝAB=4£¬AD=3£¬¡ÏDAB=$\frac{¦Ð}{3}$½øÐÐÊýÁ¿»ýµÄÔËËã±ã¿ÉÇó³ö$\overrightarrow{AE}•\overrightarrow{BF}$µÄÖµ£®

½â´ð ½â£º$\overrightarrow{BE}=2\overrightarrow{EC}$£¬$\overrightarrow{DF}=\overrightarrow{FC}$£»
¡à$\overrightarrow{BE}=\frac{2}{3}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{AD}$£¬$\overrightarrow{CF}=\frac{1}{2}\overrightarrow{CD}=-\frac{1}{2}\overrightarrow{AB}$£»
¡à$\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$£¬$\overrightarrow{BF}=\overrightarrow{BC}+\overrightarrow{CF}=\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$£»
¡à$\overrightarrow{AE}•\overrightarrow{BF}=£¨\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}£©•£¨\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}£©$
=$\frac{2}{3}\overrightarrow{AB}•\overrightarrow{AD}-\frac{1}{2}{\overrightarrow{AB}}^{2}+\frac{2}{3}{\overrightarrow{AD}}^{2}$
=$\frac{2}{3}•4•3•cos\frac{¦Ð}{3}-8+6$
=2£®
¹ÊÑ¡£ºC£®

µãÆÀ ¿¼²éÏòÁ¿Êý³ËºÍ¼Ó·¨µÄ¼¸ºÎÒâÒ壬ÏàµÈÏòÁ¿µÄ¸ÅÄÒÔ¼°ÏòÁ¿ÊýÁ¿»ýµÄÔËËã¼°Æä¼ÆË㹫ʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÉèP£¨x£¬y£©Âú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+2y¡Ü4}\\{x+y¡Ü3}\end{array}\right.$£¬ÔòµãP¶ÔÓ¦µÄÇøÓòÓë×ø±êÖáΧ³ÉµÄ·â±ÕͼÐÎÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{5}{2}$C£®$\frac{7}{2}$D£®$\frac{11}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬a2=3£¬ÇÒan+1=an+2an-1£¨n¡Ý2£©£®
£¨1£©Éèbn=an+1+¦Ëan£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa1=3£¬an=an-1-4£®
£¨1£©Õâ¸öÊýÁÐÊÇ·ñÊǵȲîÊýÁУ¿ÈôÊÇ£¬Ð´³öËüµÄ¹«²îd£®
£¨2£©Çó³öÕâ¸öÊýÁеĵÚ61Ï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®º¯Êýf£¨x£©=-$\frac{1}{2}$-$\frac{a}{4}$+acosx+sin2x£¨0¡Üx¡Ü$\frac{¦Ð}{2}$£©µÄ×î´óֵΪ2£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èôº¯Êýf£¨x£©=$\frac{lg£¨1-{x}^{2}£©}{|x-2|+a}$Ææº¯Êý£¬ÔòaµÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x¡Ý1\\ x+y¡Ü3\\ x-2y-3¡Ü0\end{array}\right.$£¬Ôòz=2x+yµÄ×îСֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³µ÷Ñлú¹¹µ÷È¡Á˵±µØ2014Äê10Ô¡«2015Äê3ÔÂÿÔµÄÎíö²ÌìÊýÓëÑÏÖØ½»Í¨Ê¹ʰ¸ÀýÊý×ÊÁϽøÐÐͳ¼Æ·ÖÎö£¬ÒÔ±¸ÏÂÒ»ÄêÈçºÎÔ¤·ÀÑÏÖØ½»Í¨Ê¹Ê×÷²Î¿¼£®²¿·Ö×ÊÁÏÈçÏ£º
ʱ¼ä¡¡14Äê10Ô¡¡14Äê11Ô¡¡14Äê12Ô¡¡15Äê1Ô¡¡15Äê2Ô¡¡15Äê3ÔÂ
¡¡Îíö²ÌìÊý7¡¡¡¡11¡¡13¡¡12¡¡10¡¡8
¡¡ÑÏÖØ½»Í¨Ê¹ʰ¸ÀýÊý¡¡14¡¡25¡¡29¡¡26¡¡2216
¸Ã»ú¹¹µÄÑо¿·½°¸ÊÇ£ºÏÈ´ÓÕâÁù×éÊýÖÐÌÞ³ý2×飬ÓÃʣϵÄ4×éÊý¾ÝÇóÏßÐԻع鷽³Ì£¬ÔÙÓñ»ÌÞ³ýµÄ2×éÊý¾Ý½øÐмìÑ飬ÈôÓÉÏßÐԻع鷽³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëËùÌÞ³ýµÄ¼ìÑéÊý¾ÝµÄÎó²î¾ù²»³¬¹ý2£¬ÔòÈÏΪµÃµ½µÄÏßÐԻع鷽³ÌÊǺÏÇéµÄ£®
£¨1£©ÇóÌÞ³ýµÄ2×éÊý¾Ý²»ÊÇÏàÁÚ2¸öÔÂÊý¾ÝµÄ¸ÅÂÊ£»
£¨2£©ÈôÌÞ³ýµÄÊÇ2014Äê10ÔÂÓë2015Äê2ÔÂÕâÁ½×éÊý¾Ý£¬ÇëÄã¸ù¾ÝÆäËü4¸öÔµÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£»
£¨3£©¢Ù¸ù¾Ý£¨2£©ËùÇóµÄ»Ø¹é·½³Ì£¬Çó2014Äê10ÔÂÓë2015Äê2ÔµÄÑÏÖØ½»Í¨Ê¹ʰ¸ÀýÊý£»
¢ÚÅжϣ¨2£©ËùÇóµÄÏßÐԻع鷽³ÌÊÇ·ñÊǺÏÇéµÄ£®
[¸½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¶¨ÒåÓòΪRµÄżº¯Êýf£¨x£©Âú×ã¶ÔÈÎÒâµÄx¡ÊR£¬ÓÐf£¨x+2£©=f£¨x£©-f£¨1£©£¬ÇÒµ±x¡Ê[2£¬3]ʱ£¬f£¨x£©=-£¨x-2£©2+1£®Èôº¯Êýy=f£¨x£©-a£¨x-$\frac{11}{12}$£©ÔÚ£¨0£¬+¡Þ£©ÉÏÇ¡ÓÐÈý¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{1}{3}$£¬3£©B£®£¨$\frac{1}{3}$£¬$\frac{4}{3}$£©C£®£¨3£¬12£©D£®£¨$\frac{4}{3}$£¬12£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸