精英家教网 > 高中数学 > 题目详情
定义:min{a,b}=
a,a≤b
b,a>b
,在区域
0≤x≤2
0≤y≤6
内任取一点P(x,y),则x、y满足min{x2+x+2y,x+y+4}=x2+x+2y的概率为
 
考点:几何概型
专题:计算题,概率与统计
分析:本题是一个几何概型,试验包含的所有事件对应的集合Ω={(x,y)|0≤x≤2,0≤y≤6},满足条件的事件A={(x,y)|0≤x≤2,0≤y≤6,x2+x+2y≤x+y+4},算出两个集合对应的面积,面积之比就是要求的概率.
解答: 解:本题是一个几何概型,
∵试验包含的所有事件对应的集合Ω={(x,y)|0≤x≤2,0≤y≤6},
∴SΩ=2×6=12,
∵满足条件的事件A={(x,y)|0≤x≤2,0≤y≤6,x2+x+2y≤x+y+4},即A={(x,y)|0≤x≤2,0≤y≤6,y≤4-x2},
∴SA=
2
0
(4-x2)dx=(4x-
1
3
x3
|
2
0
=
16
3

∴由几何概型公式得到P=
16
3
2×6
=
4
9

故答案为:
4
9
点评:本题以二元一次不等式组表示的平面区域为例,求几何概型的概率,着重考查了简单线性规划和几何概型的概率求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形ABCD是一个观光区的平面示意图,建立平面直角坐标系,使顶点A在坐标原点O,B,D分别在x轴,y轴上,AD=3百米,AB=a百米(3≤a≤4)观光区中间叶形阴影部分MN是一个人工湖,它的左下方边缘曲线是函数y=
2
x
(1≤x≤2)的图象的一段.为了便于游客观光,拟在观光区铺设一条穿越该观光区的直路(宽度不计),要求其与人工湖左下方边缘曲线段M,)N相切(切点记为P),并把该观光区分为两部分,且直线/左下部分建设为花圃.设点j′到的AD距离为t,f(t)表示花圃的面积.
(1)求花圃面积f(t)的表达式;
(2)求f(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业在今年初贷款a万元,年利率为r,从今年末开始,每年末偿还x万元,预计恰好5年内还清,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+
1
2
c=b,则角A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是:下面哪一个是符合条件的
 

(1)r∈(0,1]
(2)r∈(1,2]
(3)r∈(
3
2
,4)
(4)r∈[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x-1
x2+x+2
(x>1)
的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若tan280°=a,则sin80°的结果为(  )
A、-
1
a
B、
a
1+a2
C、-
a
1+a2
D、-
1
1+a2

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解本市的交通状况,某校高一年级的同学分成了甲、乙、丙三个组,从下午13点到18点,分别对三个路口的机动车通行情况进行了实际调查,并绘制了频率分布直方图(如图),记甲、乙、丙三个组所调查数据的标准差分别为s1,s2,s3,则它们的大小关系为(  )
A、s1>s2>s3
B、s1>s3>s2
C、s2>s3>s1
D、s3>s2>s1

查看答案和解析>>

同步练习册答案