精英家教网 > 高中数学 > 题目详情
10.设命题p:?x∈R,x2+ax+2<0,若¬p为真,实数a的取值范围是R.

分析 直接利用全称命题的否定是特称命题写出结果,利用命题的真假求解即可.

解答 解:因为全称命题的否定是特称命题,所以,命题p:?x∈R,x2+ax+2<0,若¬p为:“?x0∈R,x02+ax0+2≥0”,¬p为真,不等式对应的二次函数的开口向上,可得a∈R,
故答案为:R.

点评 本题考查命题的否定特称命题与全称命题的否定关系,命题的真假的判断与应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log4(2x+3-x2).
(1)求f(x)的定义域及单调区间;
(2)求f(x)的最大值,并求出取得最大值时x的值;
(3)设函数g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为集合A,函数y=$\frac{\sqrt{2x+4}}{x-3}$的定义域为集合B.则集合(∁UA)∩(∁UB)={x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)满足f(-x)=-f(x),且当x>0时,f(x)=x|x-2|,则当x<0时,f(x)的表达式为(  )
A.f(x)=x|x+2|B.f(x)=x|x-2|C.f(x)=-x|x+2|D.f(x)=-x|x-2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(2+i)z=3+4i,则z=(  )
A.2+iB.-2-iC.2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)•cos(x+$\frac{π}{4}$)-sin(2x+π).
(Ⅰ) 求f的(x)的最小正周期;
(Ⅱ)若将f(x)的图象向右平移$\frac{π}{12}$个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆C:(x-2)2+(y+1)2=3的圆心坐标是(  )
A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么$\overrightarrow{EF}$=$\frac{1}{2}\overrightarrow{AB}$$-\frac{2}{3}\overrightarrow{AD}$(用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知log2m=3.5,log2n=0.5,则(  )
A.m+n=4B.m-n=3C.$\frac{m}{n}=7$D.m•n=16

查看答案和解析>>

同步练习册答案