精英家教网 > 高中数学 > 题目详情
20.已知log2m=3.5,log2n=0.5,则(  )
A.m+n=4B.m-n=3C.$\frac{m}{n}=7$D.m•n=16

分析 根据对数的运算性质计算即可.

解答 解:∵log2m=3.5,log2n=0.5,
∴log2m+log2n=4,
∴log2mn=4=log216,
∴mn=16,
故选:D

点评 本题考查了对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设命题p:?x∈R,x2+ax+2<0,若¬p为真,实数a的取值范围是R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,满足Sn=2an-n
(1)求证数列{an+1}是等比数列并求{an}的通项公式
(2)设bn=(2n+1)(an+1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集为R,函数f(x)=$\sqrt{1-x}$的定义域为M,则∁RM=(  )
A.(-∞,-1)B.[1,+∞)C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式${log_2}(1-\frac{1}{x})>1$的解集是(  )
A.{x|x<0}B.{x|x<-1}C.{x|x>-1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=4x-6×2x+8,求该函数的最小值,及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:函数f(x)=loga(2+x)-loga(2-x)(a>0且a≠1)
(Ⅰ)求f(x)定义域;
(Ⅱ)判断f(x)的奇偶性,并说明理由;
(Ⅲ)求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
(1)f(x1+x2)=f(x1)f(x2)        
(2)f(x1•x2)=f(x1)+f(x2
(3)$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0              
(4)f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
(5)f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$     
(6)f(-x)=f(x).
当f(x)=lgx时,上述结论正确的序号为(2)(3)(5).(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=arcsin(x2-x)的值域为[-arcsin$\frac{1}{4}$,$\frac{π}{2}$].

查看答案和解析>>

同步练习册答案