精英家教网 > 高中数学 > 题目详情
函数y=-2x2+9的定义域为{x|-1<x<3},求此函数的值域.
考点:函数的值域,函数的定义域及其求法
专题:函数的性质及应用
分析:先根据二次的对称轴及开口方向,观察函数在给定区间上的单调性及最值点即可求得原函数的值域.
解答: 解:因为函数f(x)=-2x2+9的对称轴是:x=0,且开口向下,
∴函数f(x)=-2x2+9在定义域(-1,3)上的最大值为:yx=0=9,
最小值为:yx=3=-2×32+9=-9,
∴函数f(x)=-2x2+9在定义域(-1,3)上的值域为(-9,9].
点评:本题考查二次函数的值域,属于求二次函数的最值问题,考查运算求解能力,考查数形结合思想,属于基本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知回归直线方程中斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为(  )
A、
y
=1.23x+0.08
B、
y
=0.08x+1.23
C、
y
=1.23x+4
D、
y
=1.23x+5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边落在直线5x-12y=0上.
(1)求sinα,cosα,tanα的值;
(2)已知tanα=
3
,π<α<
2
.求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一算法的程序框图,若输出结果为S=720,则在判断框中应填入的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2-2x=0,直线l的参数方程为
x=t
y=-2
3
+
3
t
(t为参数).
(1)设y=sinθ,求圆C的参数方程;
(2)直线l与圆C交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只老鼠做试验,将这200只老鼠随机地分成两组,每组100只,其中一组注射药物A(称为A组),另一组注射药物B(称为B组),则A,B两组老鼠皮肤疱疹面积(单位:mm2)的频数分布表、频率分布直方图分别如下.
疱疹面积[60,65)[65,70)[70,75)[75,80)
频数20502010
(Ⅰ)为方便A,B两组试验对比,现都用分层抽样方法从A,B两组中各挑出20只老鼠,求A,B两组皮肤疱疹面积同为[60,65)的这一区间应分别挑出几只?
(Ⅱ)在(Ⅰ)的条件下,将A,B两组挑出的皮肤疱疹面积同为[60,65)这一区间上的老鼠放在一起观察,几天后,从中抽取两只抽血化验,记B组中被抽中的只数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax4+bx3,(其中a、b为常数),当x=
3
4
时,取得极值-
27
256

(1)求f(x)的解析式;
(2)若f(x)在(k,﹢∞﹚上为增函数,求k的最小值;
(3)设点M(-
1
2
,-p2+pq+
1
8
﹚,对任意p∈[1,
9
8
],过点M总可以做函数y=f(x)图象的四条切线,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等比数列,首项为a,公比为q,前n项和为Sn,记Tn=a12+a22+…+an2
(1)若a1=1,S3=3,求数列{an}的通项公式;
(2)若Sn=-
1
2
an+3,求证:S2n=
2
3
Tn
(3)计算:
lim
n→∞
Sn
Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥DC,DC=4,∠DAB=60°,侧面△PAD和△PAB均为边长为2的正三角形,M为线段PC的中点.
(Ⅰ)求证:PD⊥AB;
(Ⅱ)求二面角P-BC-D的平面角的正切值;
(Ⅲ)试问:在线段AB上是否存在点N,使得MN与平面PDB的交点恰好是△PDB的重心?若存在,求出AN的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案