精英家教网 > 高中数学 > 题目详情
3.已知圆C:(x+1)2+(y-2)2=4,则其圆心和半径分别为(  )
A.(1,2),4B.(1,-2),2C.(-1,2),2D.(1,-2),4

分析 利用圆的标准方程的性质求解.

解答 解:圆C:(x+1)2+(y-2)2=4的圆心为(-1,2),半径为2.
故选C.

点评 本题考查圆的圆心坐标和半径的求法,是基础题,解题时要认真审题,注意圆的标准方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知直线y=x+1与曲线y=alnx相切,若a∈(n,n+1)(n∈N+),则n=3.(参考数据:ln2≈0.7,ln3≈1.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{2}x-\frac{1}{2}$,若对于数列{an}满足:an+1=4f(an)-an-1+4(n∈N*,n≥2),且a1=-1,a2=2.
(1)求证:数列{an-an-1}(n∈N*,n≥2)为等差数列,并求数列{an}的通项公式;
(2)设${b_n}=\frac{{{a_n}+2}}{n}×{3^{n-1}}$,若数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线l1:y=kx-1与直线l2:x+y-1=0的交点位于第一象限则k的范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设Sn是数列{an}的前n项和,已知${a_1}≠0,2{a_n}-{a_1}={S_1}•{S_n},n∈{N^*}$.
(1)求a2,a3,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某计算器有两个数据输入口M1,M2一个数据输出口N,当M1,M2分别输入正整数1时,输出口N输出2,当M1输入正整数m1,M2输入正整数m2时,N的输出是n;当M1输入正整数m1,M2输入正整数m2+1时,N的输出是n+5;当M1输入正整数m1+1,MM2输入正整数m2时,N的输出是n+4.则当M1输入60,M2输入50时,N的输出是(  )
A.494B.492C.485D.483

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式an=$\frac{1}{(n+1)^{2}}$(n∈N*),记bn=(1-a1)(1-a2)…(1-an),试通过计算b1,b2,b3的值,推测出{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前五项依次为$0,\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2},\frac{{\sqrt{15}}}{5},\frac{{\sqrt{6}}}{3}$,请参考前四项归纳猜想出一个通项公式,且第五项也满足猜想,你的猜想结果是an=$\sqrt{\frac{n-1}{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:
支持希拉里支持特朗普合计
男员工
女员工
合计
(Ⅱ)根据表格中的数据,是否有95%的把握认为投票结果与性别有关?
附:
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案