精英家教网 > 高中数学 > 题目详情
13.已知直线y=x+1与曲线y=alnx相切,若a∈(n,n+1)(n∈N+),则n=3.(参考数据:ln2≈0.7,ln3≈1.1)

分析 求导数,确定切点的坐标,再构造函数,即可得出结论.

解答 解:∵f(x)=alnx,
∴f′(x)=$\frac{a}{x}$,
令$\frac{a}{x}$=1,可得x=a,故切点为(a,a+1),
代入y=alnx,可得a+1=alna.
构造f(x)=x+1-xlnx,则f(3)=4-3ln3<0,f(4)=5-5ln5>0,
∴x∈(3,4),
∴a∈(3,4),
故答案为3.

点评 本题考查导数知识的运用,考查函数零点存在定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.定义运算 $|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若$|\begin{array}{l}{sinθ}&{2}\\{cosθ}&{3}\end{array}|$=0,则$\frac{3sinθ+2cosθ}{3sinθ-cosθ}$的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则函数y=f[f(x)]-1的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,$AB=\sqrt{3}$,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,求N点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以下四个关于圆锥曲线命题:
①“曲线ax2+by2=1为椭圆”的充分不必要条件是“a>0,b>0”;
②若双曲线的离心率e=2,且与椭圆$\frac{{y}^{2}}{24}$+$\frac{{x}^{2}}{8}$=1有相同的焦点,则该双曲线的渐近线方程为y=±$\sqrt{3}$x;
③抛物线x=-2y2的准线方程为x=$\frac{1}{8}$;
 ④长为6的线段AB的端点A,B分别在x、y轴上移动,动点M(x,y)满足$\overrightarrow{AM}$=2$\overrightarrow{MB}$,则动点M的轨迹方程为
$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{16}$=1.
其中正确命题的序号为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+({a+1})x+2a,({x>0})\\{log_a}({x+1})+1,({-1<x≤0})\end{array}\right.$,(a<0,a≠1),若函数y=|f(x)|在$[{-\frac{1}{3},+∞})$上单调递增,且关于x的方程|f(x)|=x+3恰有两个不同的实根,则a的取值范围为(  )
A.$[{\frac{3}{2},2})$B.$({1,\frac{3}{2}}]∪\left\{{2,6}\right\}$C.{2,6}D.$[{\frac{3}{2},\frac{5}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.记集合A={x|x+2>0},B={y|y=cosx,x∈R}则A∪B=(  )
A.[-1.1]B.(-2,1]C.(-2,+∞)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若圆x2+y2-2x-2y=0上至少有三个不同点到直线l:y=kx的距离为$\frac{{\sqrt{2}}}{2}$,则直线l的倾斜角的取值范围是(  )
A.[15°,45°]B.[15°,75°]C.[30°,60°]D.[0°,90°]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x+1)2+(y-2)2=4,则其圆心和半径分别为(  )
A.(1,2),4B.(1,-2),2C.(-1,2),2D.(1,-2),4

查看答案和解析>>

同步练习册答案