分析 (1)利用数列的递推关系式求出数列的a2,a3,判断数列是等比数列,求出通项公式.
(2)利用错位相减法求解数列的和即可.
解答 解:(1)令n=1,得2a1-a1=a12.即a1=a12,
∵a1≠0,∴a1=1,
令n=2,得2a2-1=1•(1+a2),解得a2=2,
当n≥2时,由2an-1=Sn得,2an-1-1=Sn-1,
两式相减得2an-2an-1=an,即an=2an-1,
∴数列{an}是首项为1,公比为2的等比数列,
∴an=2n-1,即数列{an}的通项公式an=2n-1;
(2)由(1)知,nan=n•2n-1,设数列{nan}的前n项和为Tn,
则Tn=1+2×2+3×22+…+n×2n-1,①
2Tn=1×2+2×22+3×23+…+n×2n,②
①-②得,-Tn=1+2+22+…+2n-1-n•2n
=2n-1-n•2n,
∴Tn=1+(n-1)2n.
点评 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2),4 | B. | (1,-2),2 | C. | (-1,2),2 | D. | (1,-2),4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com