【题目】设有关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
【答案】(1) (2)
【解析】试题分析:(1)由题意知本题是一个古典概型,试验发生包含的基本事件共12个,然后找出满足x2+2ax+b2=0有实数根即a≥b;(2)根据几何概型的概率公式,求出对应区域的面积,进行求解即可.
解析:
设事件A为“方程x2+2ax+b2=0有实根”.
当a>0,b>0时,方程x2+2ax+b2=0有实根的等价条件为Δ=4a2-4b2=4(a2-b2)≥0,即a≥b.
(1)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.
事件A中包含9个基本事件,事件A发生的概率为P(A)=.
(2)试验的所有基本事件所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其中构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为.
科目:高中数学 来源: 题型:
【题目】已知函数(其中),若的一条对称轴离最近的对称中心的距离为.
(Ⅰ)求的单调递增区间;
(Ⅱ)在中角、、的对边分别是满足恰是的最大值,试判断的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax2+bx+c(a≠0)经过点(﹣1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若数列{an}的前n项和Sn满足Sn=f(n),求{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
(1)设f(x)与g(x)是定义在R上的两个函数,若|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且f(x)为奇函数,则g(x)也是奇函数;
(2)若x1 , x2∈R,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,且函数f(x)在R上递增,则f(x)+g(x)在R上也递增;
(3)已知a>0,a≠1,函数f(x)= ,若函数f(x)在[0,2]上的最大值比最小值多 ,则实数a的取值集合为 ;
(4)存在不同的实数k,使得关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0的根的个数为2个、4个、5个、8个.则所有正确命题的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高一数学竞赛共设有35个考场,甲、乙、丙三所学校的领队各自将本校学生人数相同的考场归为一组.经统计,甲校共有i组,各组的考场数分别为;乙校共有j组,各组的考场数分别为;丙校共有k组,各组的考场数分别为.已知包含了1 ~ 14的所有整数.证明:能找到三个考场,至少有两所学校在这三个考场中的选手人数各自是相同的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知全集U={2,4,a2-a+1},A={a+4,4},UA={7},则a=________.
(2)当a>0且a≠1时,函数必过定点_______
(3)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:
明文密文密文明文
己知加密为y=ax-2(x为明文、y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方接到密文为“14”,则原发的明文是________.
(4)已知3a=5b=M,且,则M的值为______________。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com