精英家教网 > 高中数学 > 题目详情

【题目】如图,ABC,BC边上的高AM所在的直线方程为x-2y+1=0,A的平分线所在的直线方程为y=0BC相交于点P,若点B的坐标为(1,2).

(1)分别求ABBC所在直线的方程;

(2)P点坐标和AC所在直线的方程.

【答案】(1) .(2)

【解析】试题分析:(1)得顶点,再根据点斜式方程求出所在直线的方程,

根据垂直的条件求出直线BC的斜率,再根据点斜式方程求出所在直线的方程.

(2), 由于x轴是的角平分线,的斜率为, 再根据点斜式方程求出所在直线的方程.

试题解析:

(1)得顶点.

的斜率==.

所以所在直线的方程为,,

BC边上的高AM所在的直线方程为,

所以直线BC的斜率为,所在的直线方程为.

.

(2)

因为x轴是的平分线,

的斜率为所在直线的方程为=,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若关于x的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的两个实数根x1 , x2满足x1≤0≤x2≤1,则a2+b2+4a的最小值和最大值分别为(
A. 和5+4
B.﹣ 和5+4
C.﹣ 和12
D.﹣ 和15﹣4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求证:AC⊥平面BDE;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b为实数),

(1)f(-1)=0,且对任意实数x均有f(x)0成立,F(x)的表达式;

(2)(1)的条件下,x[-2,2],g(x)=f(x)-kx是单调函数,求实数k的取值范围;

(3)mn<0,m+n>0,a>0,f(x)满足f(-x)=f(x),试比较F(m)+F(n)的值与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

1)求椭圆的方程;

2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A﹣BF﹣C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.

(Ⅰ)求的值,并作出这些数据的频率分布直方图;

(Ⅱ)假设每组数据组间是平均分布的,试估计该组数据的平均数;(同一组中的数据用该组区间的中点值作代表);

(Ⅲ)现从第3、4、5组中用分层抽样的方法抽取6人参加校“中华诗词比赛”,经过比赛后从这6人中选拔2人组成该校代表队,求这2人来自不同组别的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在四棱锥中,直线平面.

(1)求证:直线平面.

(2)若直线与平面所成的角的正弦值为,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)证明:平面ABP⊥平面ADP;
(2)若直线PA与平面PCD所成角为α,求sinα的值.

查看答案和解析>>

同步练习册答案