精英家教网 > 高中数学 > 题目详情
20.定义某种新运算“?”:S=a?b的运算原理为如图的程序框图所示,则式子5?4-3?6=(  )
A.2B.1C.3D.4

分析 算法的功能是求S=$\left\{\begin{array}{l}{a(b+1),a>b}\\{b(a+1),a≤b}\end{array}\right.$的值,由此计算式子5?4-3?6的值,可得答案.

解答 解:由程序框图知:算法的功能是求S=$\left\{\begin{array}{l}{a(b+1),a>b}\\{b(a+1),a≤b}\end{array}\right.$的值,
∴式子5?4-3?6=5×(4+1)-6×(3+1)=1,
故选:B.

点评 本题考查了选择结构的程序框图,根据框图的流程判断算法的功能是关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.集合A={x|0≤x<3且x∈Z}的子集共有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,圆C:(x-3)2+(y-1)2=9上,圆C与直线x-y+a=0交于A,B两点,且以AB为直径的圆过坐标原点,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列三个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若p:x(x-2)≤0,q:log2x≤1,则p是q的充要条件;
③若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=a•ex+blnx+c,且$f'(1)=e,f'(-1)=\frac{1}{e}$.
(1)求实数a,b的值.
(2)将(1)得到的a,b值代入f(x),得到函数g(x),若点A(0,d)在g(x)图象上,且g(x)在A点处的切线过点B(1,4),求c,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,过抛物线C:y2=2px(p>0)的焦点F作直线交C于A、B两点,过A、B分别向C的准线l作垂线,垂足为A1、B1,已知△AA1F与△BB1F的面积分别为9和1,则△A1B1F的面积为(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若a=b=$\sqrt{3}$,∠C=$\frac{5π}{6}$,则c=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|x2-1|+x2+kx.若对于区间(0,+∞)内的任意x,总有f(x)≥0成立,求实数k的取值范围为(  )
A.[0,+∞)B.[-2,+∞)C.(-2,+∞)D.[-1,+∞)

查看答案和解析>>

同步练习册答案