精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,圆C:(x-3)2+(y-1)2=9上,圆C与直线x-y+a=0交于A,B两点,且以AB为直径的圆过坐标原点,则a=-1.

分析 将直线方程代入圆的方程,利用韦达定理,及以AB为直径的圆过原点,可得关于c的方程,即可求解,注意方程判别式的验证.

解答 解:由直线x-y+a=0与圆C:(x-3)2+(y-1)2=9,消去y,得2x2+(2a-8)x+a2-2a+1=0①
设直线l和圆C的交点为A (x1,y1),B(x2,y2),则x1、x2是①的两个根.
∴x1x2=$\frac{(a-1)^{2}}{2}$,x1+x2=4-a.②
由题意有:OA⊥OB,即x1x2+y1y2=0,
∴x1x2+(x1+a)(x2+a)=0,即2x1x2+a(x1+x2)+a2=0③
将②代入③得:a2+2a+1=0. 
解得:a=-1,
判别式△>0,满足题意
故答案为:-1.

点评 本题综合考查直线与圆的位置关系,考查向量知识的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=e2-ax-1,g(x)=ln(ex-1)-lnx
(1)求证:当ax<x时,f(x)>0恒成立;
(2)当a≤1,对任意x>0,比较f(g(x))与f(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,已知Sn=$\frac{3}{2}({a_n}-1)$.
(1)求a1的值,并求数列{an}的通项公式;
(2)若数列{bn}为等差数列,且b3+b5=-8,2b1+b4=0,设cn=an•bn,数列{cn}的前n项和为Tn,证明:对任意$n∈N*,{T_n}+(n-\frac{5}{2})•{3^{n+1}}$是一个与n无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知幂函数y=f(x)的图象经过点$(\sqrt{2},2\sqrt{2}),则f(5)$=125.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)=ln(ax)(0<a<1),过点P(a,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C在点Q处的切线交x轴于点R,则△PQR的面积的最大值是(  )
A.1B.$\frac{4}{e^2}$C.$\frac{1}{2}$D.$\frac{8}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一条曲线C在y轴右边,C上每一点到点$F(\frac{1}{4}\;,\;\;0)$的距离减去它到y轴距离的差都是$\frac{1}{4}$.点A,B在曲线C上且位于x轴的两侧,$\overrightarrow{OA}•\overrightarrow{OB}$=2(其中O为坐标原点).
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义某种新运算“?”:S=a?b的运算原理为如图的程序框图所示,则式子5?4-3?6=(  )
A.2B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的S为(  )
A.22013-1B.$\frac{1}{3}({2^{2014}}-1)$C.$\frac{1}{3}({2^{2013}}-1)$D.22014-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.存在函数f(x)满足:对任意x∈R,都有(  )
A.f(sinx)=sin2xB.f(cosx)=sin2xC.f(x2-2x)=|x-1|D.f(|x-1|)=x2-1

查看答案和解析>>

同步练习册答案