精英家教网 > 高中数学 > 题目详情
19.设数列{an}的前n项和为Sn,已知Sn=$\frac{3}{2}({a_n}-1)$.
(1)求a1的值,并求数列{an}的通项公式;
(2)若数列{bn}为等差数列,且b3+b5=-8,2b1+b4=0,设cn=an•bn,数列{cn}的前n项和为Tn,证明:对任意$n∈N*,{T_n}+(n-\frac{5}{2})•{3^{n+1}}$是一个与n无关的常数.

分析 (1)根据an=Sn-Sn-1(n≥2)得出{an}为等比数列,从而得出an
(2)求出bn,cn,使用错位相减法求出Tn即可得出结论.

解答 解:(1)n=1时,a1=$\frac{3}{2}$(a1-1),解得a1=3.
当n≥2时,∵Sn=$\frac{3}{2}({a_n}-1)$,∴Sn-1=$\frac{3}{2}$(an-1-1).
∴an=Sn-Sn-1=$\frac{3}{2}$(an-an-1),∴an=3an-1
∴{an}是以3为首项,以3为公比的等比数列,
∴an=3•3n-1=3n
(2)∵{bn}是等差数列,b3+b5=-8,
∴b4=-4,又2b1+b4=0,∴b1=2.
∴{bn}的公差d=$\frac{{b}_{4}-{b}_{1}}{3}$=-2.
∴bn=2-2(n-1)=4-2n.
∴cn=(4-2n)3n
∴Tn=2•3+0•32+(-2)•33+…+(4-2n)•3n
∴3Tn=2•32+0•33+(-2)•34+…+(4-2n)•3n+1
两式相减得-2Tn=6+(-2)•32+(-2)•33+…+(-2)•3n-(4-2n)•3n+1
=6-2•$\frac{{3}^{2}(1-{3}^{n-1})}{1-3}$-(4-2n)•3n+1=15+(2n-5)3n+1
∴Tn=-$\frac{15}{2}$+($\frac{5}{2}$-n)•3n+1
∴Tn+(n-$\frac{5}{2}$)•3n+1=-$\frac{15}{2}$.
∴Tn+(n-$\frac{5}{2}$)•3n+1是一个与n无关的常数.

点评 本题考查了等比数列的判断,通项公式的求法,错位相减法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在正方体ABCD-A1B1C1D1中,棱长为a,E为棱CC1上的动点.
(1)求异面直线BD与A1E所成的角;
(2)确定E点的位置,使平面A1BD⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.集合A={x|0≤x<3且x∈Z}的子集共有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知角α的终边经过点P(4,-3),
(1)求sinα,cosα,tanα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(π+α)}$•$\frac{tan(π-α)}{cos(α+π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线${x^2}-\frac{y^2}{3}=1$的渐近线方程是(  )
A.y=±xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛2颗骰子,则向上点数不同的概率为(  )
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,圆C:(x-3)2+(y-1)2=9上,圆C与直线x-y+a=0交于A,B两点,且以AB为直径的圆过坐标原点,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若a=b=$\sqrt{3}$,∠C=$\frac{5π}{6}$,则c=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案