精英家教网 > 高中数学 > 题目详情
16.已知幂函数y=f(x)的图象经过点$(\sqrt{2},2\sqrt{2}),则f(5)$=125.

分析 用待定系数法,设幂函数f(x)=xα,把点的坐标代入即可解出解析式,再计算f(5).

解答 解:设幂函数f(x)=xα,把点($\sqrt{2}$,2$\sqrt{2}$)代入可得
2$\sqrt{2}$=($\sqrt{2}$)α,解得α=3.
∴f(x)=x3
∴f(5)=53=125.
故答案为:125.

点评 本题考查了幂函数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四个不相等的实数根,则实数k的取值范围是(  )
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知角α的终边经过点P(4,-3),
(1)求sinα,cosα,tanα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(π+α)}$•$\frac{tan(π-α)}{cos(α+π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛2颗骰子,则向上点数不同的概率为(  )
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果椭圆的两焦点为F1(0,-1)和F2(0,1),P是椭圆上的一点,且|PF1|,|F1F2|,|PF2|成等差数列,那么椭圆的方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+\frac{y^2}{3}=1$D.$\frac{x^2}{3}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,圆C:(x-3)2+(y-1)2=9上,圆C与直线x-y+a=0交于A,B两点,且以AB为直径的圆过坐标原点,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=a•ex+blnx+c,且$f'(1)=e,f'(-1)=\frac{1}{e}$.
(1)求实数a,b的值.
(2)将(1)得到的a,b值代入f(x),得到函数g(x),若点A(0,d)在g(x)图象上,且g(x)在A点处的切线过点B(1,4),求c,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}{e^x},x<0\\-{x^2}+4x+3,x≥0\end{array}\right.$,若方程f(x)-k=0有两个零点,则实数k的取值范围是(  )
A.[3,7)∪{-4e-2,0}B.[3,7)∪{-4e-2}C.[4e-2,7)D.[0,7]∪{-4e-2}

查看答案和解析>>

同步练习册答案