精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数在定义域内的极值点的个数;

(2)若函数处取得极值,对任意的恒成立,,求实数的取值范围.

【答案】(1)详见解析;(2).

【解析】试题分析:(Ⅰ)求出原函数的导函数,然后对 分类讨论导函数的符号,在 时由导函数在不同区间内的符号得到原函数的单调性,从而求得函数的极值点;
(Ⅱ)由函数 处取得极值求得,代入函数解析式,进一步代入 ,分离参数后构造函数,利用导数求其最小值后得答案.

试题解析:

(1).

时,上恒成立,函数单调递减,所以上没有极值点;

时,由,由

所以上递减,在递增,即处有极小值.

综上:当时,上没有极值点;

时,上有一个极值点.

(2)因为函数处取得极值,所以.

因为,令,可得上递减,在上递增.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

学生编号 题号

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

题号

1

2

3

4

5

实测答对人数

实测难度

(Ⅱ)从编号为155人中随机抽取2人,求恰好有1人答对第5题的概率;

Ⅲ)定义统计量,其中为第题的实测难度, 为第题的预估难度.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 分别是角的对边,且,若 ,则的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)若,求不等式的解集;

(2)若方程有三个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线过点,且方向向量为;在以为极点, 轴的正半轴为极轴的极坐标系中,圆的极坐标方程为.

(1)求直线的参数方程;

(2)若直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国式过马路” 存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.

(1)求列联表中的的值;
(2)根据列联表中的数据,判断是否有把握认为反感“中国式过马路”与性别有关?

参考公式:

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的导函数.

(1)求的极值;

(2)证明:对任意实数,都有恒成立;

(3)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:

期末分数段

人数

5

10

15

10

5

5

“过关”人数

1

2

9

7

3

4

(1)由以上统计数据完成如下列联表,并判断是否有的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由:

分数低于90分人数

分数不低于90分人数

合计

“过关”人数

“不过关”人数

合计

(2)在期末分数段的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为,求的分布列及数学期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线方程为.

(1)求该双曲线的实轴长、虚轴长、离心率;

(2)若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程.

查看答案和解析>>

同步练习册答案