分析 (1)如图连结DF,证明DF⊥AC,BD⊥AC.推出AC⊥平面BDEF,即可证明AC⊥平面BEF.
(2)设FC的中点为I,连接GI,HI.证明GI∥EF.GI∥DB.证明HI∥BC.即可证明GHI∥平面ABC.然后证明GH∥平面ABC.
解答 证明:(1)∵EF∥DB,∴EF与DB确定平面BDEF.
如图①,连结DF.∵AF=CF,D是AC的中点,∴DF⊥AC.同理可得BD⊥AC.
又BD∩DF=D,BD、DF?平面BDEF,∴AC⊥平面BDEF,即AC⊥平面BEF.
(2)如图②,设FC的中点为I,连接GI,HI.
在△CEF中,∵G分别是EC的中点,∴GI∥EF.
又EF∥DB,∴GI∥DB.
在△CFB中,∵H分别是FB的中点,∴HI∥BC.
又HI∩GI=I,∴平面GHI∥平面ABC.
∵GH?平面GHI,∴GH∥平面ABC.![]()
点评 本题考查直线与平面垂直的判定定理以及直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理能力.
科目:高中数学 来源: 题型:解答题
| 等级 | 优秀 | 合格 | 不合格 |
| 男生(人) | 15 | x | 5 |
| 女生(人) | 15 | 3 | y |
| 男生 | 女生 | 总计 | |
| 优秀 | 15 | 15 | 30 |
| 非优秀 | 10 | 5 | 15 |
| 总计 | 25 | 20 | 45 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | [$\frac{1}{2}$,1) | C. | [-$\frac{1}{2}$,1] | D. | (-$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com