精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=sin(2x-$\frac{π}{6}$)-m在[0,$\frac{π}{2}$]上有两个零点,则m的取值范围为(  )
A.($\frac{1}{2}$,1)B.[$\frac{1}{2}$,1)C.[-$\frac{1}{2}$,1]D.(-$\frac{1}{2}$,1)

分析 通过x的范围求出相位的范围,求出函数f(x)=sin(2x-$\frac{π}{6}$)的值域,然后求解m的范围.

解答 解:因x∈[0,$\frac{π}{2}$],故$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,
由于函数函数f(x)=sin(2x-$\frac{π}{6}$)在[-$\frac{π}{6}$,$\frac{π}{2}$]上单调递增;
在[$\frac{π}{2}$,$\frac{5π}{6}$]上单调递减,且f($\frac{π}{6}$)=f($\frac{5π}{6}$)=$\frac{1}{2}$,
故当$\frac{1}{2}≤m<1$时,
函数y=f(x)的图象与直线y=m有两个交点,
故选:B.

点评 本题考查函数的零点个数的应用,三角函数的最值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知f(x)=x2-4x+5,在区间[1,m]上的值域为[1,2],则m的取值范围是[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x(lnx+1)(x>0).
(I)求函数f(x)的最小值;
(2)设F(x)=ax2+f(x)(a∈R),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Sn是等差数列{an}的前n项和,若S6=36,Sn=324,Sn-6=144(n>6),则n等于(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}满足a5=14,a7=20,数列{bn}的前n项和为Sn,且bn=2-2Sn
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 证明数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)(x∈R)是以2为最小正周期的周期函数,且x∈[0,2]时,f(x)=(x-1)2,则f($\frac{7}{2}$)=(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在如图所示的几何体中,D是AC的中点,EF∥DB.
(1)已知AB=BC,AF=CF,求证:AC⊥平面BEF;
(2)已知G、H分别是EC和FB的中点,求证:GH∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题p:f(x)=$\frac{1}{x-m}$在区间(-4,+∞)上是减函数;命题q:关于x的不等式x2-(m+1)x+$\frac{m+7}{4}$≤0在(-∞,+∞)上有解.若(¬p)∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.集合A={x|-1<x<2},则集合A∩Z的真子集个数为3.

查看答案和解析>>

同步练习册答案