精英家教网 > 高中数学 > 题目详情
11.集合A={x|-1<x<2},则集合A∩Z的真子集个数为3.

分析 由题意用列举法写出集合,然后推出真子集的个数.

解答 解:集合{x|-1<x≤2,x∈Z}={0,1},
所以集合的真子集的个数为22-1=3.
故答案为:3.

点评 本题考查集合与真子集的关系,集合中元素个数与真子集的关系是2n-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(2x-$\frac{π}{6}$)-m在[0,$\frac{π}{2}$]上有两个零点,则m的取值范围为(  )
A.($\frac{1}{2}$,1)B.[$\frac{1}{2}$,1)C.[-$\frac{1}{2}$,1]D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知锐角△ABC中内角A、B、C所对边的边长分别为a、b、c,满足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB;
(1)求角C的值;
(2)设函数f(x)=sin(ωx+C)+cosωx(ω>0),且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3x$-\frac{1}{{3}^{x}}$,函数g(x)=$\left\{\begin{array}{l}{f(x)+2(x≥0)}\\{f(-x)+2(x<0)}\end{array}\right.$,则函数g(x)的最小值为(  )
A.0B.$\frac{3}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x2+mx-1,m为实数.
(1)已知对任意的实数f(x),都有f(x)=f(2-x)成立,设集合A={y|y=f(x),x∈[-$\frac{{\sqrt{2}}}{2}$,$\frac{{\sqrt{2}}}{2}}$]},求集合A.
(2)记所有负数的集合为R-,且R-∩{y|y=f(x)+2}=∅,求所有符合条件的m的集合;
(3)设g(x)=|x-a|-x2-mx(a∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知{an}为等差数列,若a1+a5+a9=8π,则cosa5的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.两个二进制数101(2)与110(2)的和用十进制数表示为(  )
A.12B.11C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知cos($\frac{π}{6}$-α)=$\frac{{\sqrt{3}}}{3}$,则sin($\frac{5π}{6}$-2α)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知sinα=$\frac{3}{4}$,α∈[$\frac{π}{2}$,π],求cosα、tanα的值.
(2)已知tanθ=-2,求$\frac{{cos(θ-5π)+3cos(\frac{π}{2}-θ)}}{{2sin(θ-\frac{3π}{2})+sin(-θ-4π)}}$的值.

查看答案和解析>>

同步练习册答案