精英家教网 > 高中数学 > 题目详情
已知一个正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线,根据正四面体ABCD外接球与内切球,画出图形,确定两个球的关系,通过正四面体的体积,求出两个球的半径的即可.
解答: 解:将正四面体ABCD,补成正方体,则正四面体ABCD的棱为正方体的面上对角线,
设正四面体ABCD的棱长为a,则正方体的棱长为
2
2
a,
正四面体的外接球,就是以正四面体的棱为面对角线的正方体的外接球,
球的直径就是正方体的对角线的长,所以正方体的对角线为2R,
∵正方体的棱长为
2
2
a,所以
3
×
2
2
a=2R,
∴R=
6
4
a.
正四面体ABCD外接球与内切球的两球球心重合,设为O. 
设DO的延长线与底面ABC的交点为E,则DE为正四面体的高,DE⊥底面ABC,
且DO=R,OE=r,OE=正四面体PABC内切球的半径.
设正四面体ABCD底面面积为S. 
将球心O与四面体的4个顶点全部连接,
可以得到4个全等的正三棱锥,球心为顶点,以正四面体面为底面.
每个正三棱锥体积V1=
1
3
•S•r 而正四面体体积V2=
1
3
•S•(R+r)
从而有,4•V1=V2
所以,4•
1
3
•S•r=
1
3
•S•(R+r),
所以,
r
R
=
1
3

∴这两个球的表面积之比为1:9,体积之比为1:27.
点评:本题考查球的表面积、体积公式,解题的关键是将正四面体ABCD,补成正方体,使得球O是正方体的外接球.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用指定方法法证明不等式:
3
+
5
2
+
6

(Ⅰ)分析法;
(Ⅱ)反证法.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点A(-1,1),且在y上的截矩是在x轴上的截距的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+3,x∈[-4,6],
(Ⅰ)当a=-2时,求f(x)的值域;
(Ⅱ)求实数a的取值范围,使函数y=f(x)在区间[-4,6]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2x+3在区间(-∞,m]上是增函数,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,0是坐标原点,且∠AOP=
π
6
,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是(m,
6
3
),求cos(α-
π
6
)的值;
(Ⅱ)若函数f(α)=
OP
OQ
,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边
分别交单位圆于A,B两点.已知A,B两点的横坐标分别是
5
5
10
10

(1)求tanα和tanβ的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K,连接AC,且KG2=KD•GE.
(Ⅰ)求证:KE=GE;
(Ⅱ)求证:AC∥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆9x2+16y2=144的顶点为焦点,且过椭圆焦点的双曲线方程是
 

查看答案和解析>>

同步练习册答案