精英家教网 > 高中数学 > 题目详情
已知命题P:函数f(x)=logax在区间(0,+∞)上是单调递增函数;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,且P∧Q为假命题,求实数a的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:若命题P为真,则a>1.若命题Q为真,则a-2=0或
a-2<0
△=4(a-2)2+16(a-2)<0
,解得a.由P∨Q是真命题,且P∧Q为假命题,可得P真Q假,或P假Q真.即可解出.
解答: 解:若命题P为真,则a>1.
若命题Q为真,则a-2=0或
a-2<0
△=4(a-2)2+16(a-2)<0
,解得-2<a<2.
∵P∨Q是真命题,且P∧Q为假命题,
∴P真Q假,或P假Q真.
a>1
a≤-2或a≥2
 或
a≤1
-2<a<2

即a≥2或-2<a≤1.
点评:本题考查了对数函数的单调性、一元二次不等式的解集与判别式的关系、复合命题真假的判定方法,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“α≠
π
3
”是“sinα≠
3
2
”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式(1+k)x2+kx+k<x2+1的解集为空集,则实数k的范围为(  )
A、[
4
3
,+∞)
B、(0,+∞)
C、[0,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)满足:对任意a,b∈R有f(a+b)=f(a)+f(b)+1.
(1)求f(0)的值;
(2)令F(x)=f(x)+1,判断y=F(x)的奇偶性;
(3)若x>0有f(x)>-1,解不等式f(x)+f(x+5)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2×3n-1
(1)求a1,a2,a3
(2)求这个数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=4,Q是x轴上的动点,QA、QB分别切圆M于A、B两点.
(1)如果|AB|=2
2
,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+(4a-4)x+a2-8a+4(x∈R),g(x)与f(x)图象关于直线x=1对称.
(Ⅰ)求g(x)解析式;
(Ⅱ)设函数h(x)=2x3+3ag(x),如果h(x)在开区间(0,1)上存在极小值,求a的取值范围;
(Ⅲ)若关于x的不等式g(x)≥x+a2-5a+11在区间[0,2]有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)定义域是[-3,3],当x≥0时,f(x)=
x
-1.
(1)求函数y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并利用图象写出函数y=f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)0.0081 
1
4
+(4 -
3
4
2+(
8
 -
4
3
-16-0.75
(2)lg5+lg2-(-
1
3
-2+(
2
-1)0+log28.

查看答案和解析>>

同步练习册答案