精英家教网 > 高中数学 > 题目详情
3.若sinx=a-2,则实数a的取值范围用区间表示为[1,3].

分析 根据正弦函数的值域列出不等式,再求出实数a的取值范围并用区间表示.

解答 解:由题意得,sinx=a-2,
则-1≤a-2≤1,解得1≤a≤3,
所以实数a的取值范围是[1,3],
故答案为:[1,3].

点评 本题考查了正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设f(x)是定义在(-∞,+∞)上的以2为周期的周期函数且f(x)为偶函数,在区间[2,3]上,f(x)=-2(x-3)2+4.
(1)当x∈[1,2]时,f(x)的解析式;
(2)若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某城市随机监测一年内100天的空气质量PM2.5的数据API,结果统计如下:
API[0,50](50,100](100,150](150,200](200,250](250,+∞)
天数61222301416
(1)若将API值低于150的天气视为“好天”,并将频率视为概率,根据上述表格,预测今年高考6月7日、8日两天连续出现“好天”的概率;
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出10天,再从这10天中任取3天计算企业利润之和X,求离散型随机变量X的分布列以及数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设等差数列{an}的前n项和为Sn,且满足S2014>0,S2015<0,对任意正整数n,都有|an|≥|ak|,则k的值为(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.sinα+cosα=$\frac{1}{5}$,求sinα-cosα及tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从一个有红、橙、黄、绿这四色球的球袋中(每种就一个),随机摸出两个球.
(1)随机摸出2个球,设红球为X,则随机变量X的概率分布为
X01
P0.50.5

(2)求恰好摸出两个球是红色和绿色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若实数x,y满足$\left\{\begin{array}{l}{x+y≤3}\\{x+2y≥3}\\{2x+y≥3}\end{array}\right.$,则x2+5y2的取值范围为[5,45].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知A1,A2,B1,B2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点,△A1B1B2的外接圆为圆M,椭圆C过点(-1,$\frac{\sqrt{6}}{3}$),($\frac{3}{2}$,$\frac{1}{2}$).
(1)求椭圆C及圆M的方程;
(2)若点D是圆M劣弧$\widehat{{A}_{1}{B}_{2}}$上一动点(点D异于端点A1,B2),直线B1D分别交线段A1B2,椭圆C于点E,G,直线B2G与A1B1交于点F.
(i)求$\frac{G{B}_{1}}{E{B}_{1}}$的最大值;
(ii)E,F两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正方体ABCD-A1B1C1D1的棱长为1,且点E为棱AB上任意一个动点.当点B1到平面A1EC的距离为$\frac{{\sqrt{21}}}{6}$时,点E所有可能的位置有几个2.

查看答案和解析>>

同步练习册答案