精英家教网 > 高中数学 > 题目详情
11.在四边形ABCD中(如图①),AB∥CD,AB⊥BC,G为AD上一点,且AB=AG=1,GD=CD=2,M为GC的中点,点P为边BC上的点,且满足BP=2PC.现沿GC折叠使平面GCD⊥平面ABCG(如图②).
(1)求证:平面BGD⊥平面GCD:
(2)求直线PM与平面BGD所成角的正弦值.

分析 (1)利用勾股定理,证明BG⊥GC,根据平面与平面垂直的性质,证明BG⊥平面GCD,即可证明平面BGD⊥平面GCD:
(2)取BP的中点H,连接GH,则GH∥MP,作HQ⊥平面BGD,连接GQ,则∠HGQ为直线GH与平面BGD所成的角,即直线PM与平面BGD所成角.

解答 (1)证明:在直角梯形ABCD中,AB=AG=1,GD=CD=2,BC=2$\sqrt{2}$,cosD=$\frac{1}{3}$,
∴GC=$\sqrt{4+4-2×2×2×\frac{1}{3}}$=$\frac{4\sqrt{3}}{3}$,BG=$\frac{2\sqrt{6}}{3}$,
∴BG2+GC2=BC2,∴BG⊥GC,
∵平面GCD⊥平面ABCG,平面GCD∩平面ABCG=GC,
∴BG⊥平面GCD,
∵BG?平面GCD,
∴平面BGD⊥平面GCD:
(2)解:取BP的中点H,连接GH,则GH∥MP,作HQ⊥平面BGD,连接GQ,则∠HGQ为直线GH与平面BGD所成的角,即直线PM与平面BGD所成角.
由(1),作CN⊥GD,则CN⊥平面BGD,
∵HQ⊥平面BGD,
∴HQ∥GN,
∴$\frac{HQ}{CN}$=$\frac{BH}{BC}$=$\frac{1}{3}$,
∴HQ=$\frac{1}{3}$CN.
△DGC中,GC=$\frac{4\sqrt{3}}{3}$,DM=$\frac{2\sqrt{6}}{3}$,
由GD•CN=GC•DM,得CN=$\frac{4\sqrt{2}}{3}$,
∴HQ=$\frac{4\sqrt{2}}{9}$,
∵直角梯形ABCD中,GH=$\frac{4}{3}$,∴sin∠HGQ=$\frac{HQ}{GH}$=$\frac{\sqrt{2}}{3}$,
∴直线PM与平面BGD所成角的正弦值为$\frac{\sqrt{2}}{3}$.

点评 本题考查平面与平面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设Sn为数列{an}的前n项和,且Sn=2an-n+1(n∈N*),bn=an+1.
(1)求数列{bn}的通项公式;
(2)求数列{nbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是定义在R上的可导函数,其导函数为f′(x),若对任意实数x有f(x)>f′(x),且y=f(x)-1的图象过原点,则不等式$\frac{f(x)}{{e}^{x}}$<1的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下2×2列联表:
喜欢游泳不喜欢游泳合计
男生401050
女生203050
合计6040100
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上述列联表补充完整,并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$,其中n=n11+n12+n21+n22
参考数据:
P(Χ2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F与抛物线y2=4x的焦点重合,椭圆C上的点到F的最大距离为3.
(1)求椭圆C的方程;
(2)过椭圆C右焦点F的直线l(与x轴不重合)与椭圆C交于A、B两点,求△OAB(O为坐标原点)面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线a,b,平面α,满足a⊥α,且b∥α,有下列四个命题:
①对任意直线c?α,有c⊥a;
②存在直线c?α,使c⊥b且c⊥a;
③对满足a?β的任意平面β,有β⊥α;
④存在平面β⊥α,使b⊥β.
其中正确的命题有①②③④(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间中,下列命题正确的是(  )
A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行
C.垂直于同一直线的两条直线平行D.垂直于同一平面的两条直线平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,设f(n)=an,且f(n)满足f(n+1)-2f(n)=2n(n∈N*),且a1=1.
(1)设${b_n}=\frac{a_n}{{{2^{n-1}}}}$,证明数列{bn}为等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆16x2+25y2=400
(Ⅰ)求椭圆的长轴长和短半轴的长   
(Ⅱ)求椭圆的焦点和顶点坐标.

查看答案和解析>>

同步练习册答案