精英家教网 > 高中数学 > 题目详情
如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥平面BCE;
(2)求BF与平面ABCD所成的角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由线面垂直得BF⊥AE,从而平面ABCD⊥平面ABE,由BC⊥AB,得BC⊥平面ABE,从而BC⊥AE,由此能证明AE⊥平面BCE.
(2)取AB的中点O,连结OC、OE,过F作FG∥OE,交OC于G,由已知得∠FBG为BF与平面ABCD所成的角,由此能求出BF与平面ABCD所成的角的正弦值.
解答: (1)证明:∵BF⊥平面ACE,
∴BF⊥AE,
∵二面角D-AB-E为直二面角,
∴平面ABCD⊥平面ABE,
又BC⊥AB,
∴BC⊥平面ABE,
∴BC⊥AE,
又BF?平面BCE,BC?平面BCE,BF∩BC=B,
∴AE⊥平面BCE.

(2)解:取AB的中点O,连结OC、OE,过F作FG∥OE,交OC于G,
∵二面角D-AB-E为直二面角,∴平面ABCD⊥平面ABE,
∴OE⊥平面ABCD,∴FG⊥平面ABCD,
∴∠FBG为BF与平面ABCD所成的角,
由(1)知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=
2
,EO=1,
在直角三角形BCE中,CE=
BC2+BE2
=
6

BF=
BC•BE
CE
=
2
2
6
=
2
3
,FC=
2
6
3

∴FG=
2
3
OE=
2
3

在直角三角形BGF中,sin∠FBG=
FG
BF
=
2
3
2
3
=
3
3

∴BF与平面ABCD所成的角的正弦值为
3
3
点评:本题考查直线与平面垂直的判定定理、平面与平面垂直的性质定理、勾股定理、二面角的求解等基础知识和空间向量的立体几何中的应用,意在考查方程思想、等价转化思想等数学思想方法和考生的空间想象能力、逻辑推理能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,四棱柱ABCD-A1B1C1D1中,E、F分别是AB1、BC1的中点,下列结论中,正确的是(  )
A、EF⊥BB1
B、EF∥平面ACC1A1
C、EF⊥BD
D、EF⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,Sn为数列{an}的前n项和,且Sn=nan-(n2-n)
(1)求{an}通项公式.
(2)若数列{an}满足bn+1-bn=2an+3,且b1=3,{
1
bn
}的前n项和Tn,试证明Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函数f(x)的最小正周期和单调增区间;
(Ⅱ)求函数f(x)在[-
π
2
,0]
上的最值及取得最值时自变量x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.AA1=1,AC=
2
,AB=2,设D,E分别是线段BC,CC1的中点.
(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1
(2)设点M为线段AB的中点,证明:直线DE∥平面A1MC;
(3)在(1)条件下,求点D到平面A1B1E1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加,假设基金平均年利率为r=6.24%,资料显示:2003年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(2003年记为f(1),2004年记为f(2),…,依此类推).
(1)用f(1)表示f(2)和f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2013年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由(参考数据:1.03129≈1.32)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
xlnx
x+1
和直线l:y=m(x-1).
(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围;
(3)求证:ln
42n+1
n
i=1
i
4i2-1
(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

一个圆锥的侧面展开图是圆心角为
4
3
π;则圆锥母线与底面所成角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当|x|≤1时,arccos(-x)等于
 

查看答案和解析>>

同步练习册答案