精英家教网 > 高中数学 > 题目详情
(12分)
已知函数(其中是自然对数的底数,为正数)
(I)若处取得极值,且的一个零点,求的值;
(II)若,求在区间上的最大值;
(III)设函数在区间上是减函数,求的取值范围.
(I)
(II)时,单调递减;时,单调递增

,即时,
,即时,
(III)
(I)由可得关于k的方程,解出k值.
(II)先求导,然后利用导数研究f(x)的单调性极值和最值.
(III)本小题的实质是在区间上恒成立,即.
解法一:
(I)由已知


(II)

由此得时,单调递减;时,单调递增

,即时,
,即时,
(III)
在是减函数,
上恒成立
上恒成立
上恒成立
当且仅当时等号成立.

解法二;(I),(II)同解法一
(III)
在是减函数,
上恒成立
上恒成立
不妨设





由于无解.
综上所述,得出,即的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,且函数处都取得极值。
(1)求实数的值;
(2)求函数的极值;
(3)若对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)求函数在区间上的最小值;
(Ⅲ)试判断方程(其中)是否有实数解?并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.
(Ⅰ)如果函数>0)的值域为6,+∞,求的值;
(Ⅱ)研究函数(常数>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)设函数内有极值。
(1)求实数的取值范围;
(2)若分别为的极大值和极小值,记,求S的取值范围。
(注:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为实数,函数
(1)求的单调区间
(2)求证:当时,有
(3)若在区间恰有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数时取得极值.
(1)求a、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点与短轴的一个端点连结成等腰直角三角形,直线是抛物线的一条切线。
(1)  求椭圆方程;
(2)  直线交椭圆于A、B两点,若点P满足(O为坐标原点), 判断点P是否在椭圆上,并说明理由。

查看答案和解析>>

同步练习册答案