精英家教网 > 高中数学 > 题目详情
已知椭圆的两焦点与短轴的一个端点连结成等腰直角三角形,直线是抛物线的一条切线。
(1)  求椭圆方程;
(2)  直线交椭圆于A、B两点,若点P满足(O为坐标原点), 判断点P是否在椭圆上,并说明理由。


本试题结合了导数的几何意义来求解椭圆的方程以直线与椭圆的位置关系的综合运用。
(1)利用已知中切线的斜率就是该点的导数值,然后得到直线方程,同时利用椭圆的性质得到参数a,bc,的关系式得到求解。
(2)联立方程组,结合已知中的向量关系,得到坐标关系,利用点P的坐标,代入椭圆中,判定是否符合题意。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当=时,求曲线在点(,)处的切线方程。
(2) 若函数在(1,)上是减函数,求实数的取值范围;
(3)是否存在实数若不存在,说明理由。若存在,求出的值,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知函数(其中是自然对数的底数,为正数)
(I)若处取得极值,且的一个零点,求的值;
(II)若,求在区间上的最大值;
(III)设函数在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数.
(Ⅰ)当时,求的单调递增区间;
(Ⅱ)若的图象恒在的图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若直线与函数的图像有个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(常数a,b满足0<a<1,bR)
(1)求函数f(x)的单调区间和极值;
(2)若对任意的,不等式|a恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值
范围;若不存在,说明理由;
(Ⅲ)如果对,总有,则称的凸
函数,如果对,总有,则称的凹函数.当时,利用定义分析的凹凸性,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

y=x -ln(1+x)的单调递增区间是 (     )
A.( -1 ,0 )B.( -1 ,+)C.(0 ,+ )D.(1 ,+ )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数上单调递增,则实数a的取值范围是       .

查看答案和解析>>

同步练习册答案