精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数.
(Ⅰ)当时,求的单调递增区间;
(Ⅱ)若的图象恒在的图象的上方,求实数的取值范围.
(Ⅰ)的单调递增区间为. (Ⅱ).   
本试题主要是考查了运用导数求解函数单调性的问题以及运用导数证明不等式的恒成立问题的综合运用。
(1)先求解定义域和导数,然后令导数大于零或者小于零得到单调的增减区间。
(2)设
, 6分
的图象恒在的图象的上方,只要,转化为最值问题来解决。
解:(Ⅰ)由,令知,
,∴,所以的单调递增区间为.  4分
(Ⅱ)设
, 6分
的图象恒在的图象的上方,只要
时,上递减,在上递增,
.   8分
②当时,恒成立.    10分
③当时,上递减,在上递增,
,即
综上,的取值范围为. 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数)。
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为实数,函数
(1)求的单调区间
(2)求证:当时,有
(3)若在区间恰有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数时取得极值.
(1)求a、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的偶函数满足,当时有,则不等式的解集为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数若要使方程有且只有一个实根,则实数的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处有极值
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点与短轴的一个端点连结成等腰直角三角形,直线是抛物线的一条切线。
(1)  求椭圆方程;
(2)  直线交椭圆于A、B两点,若点P满足(O为坐标原点), 判断点P是否在椭圆上,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数的导函数。
(1)若,不等式恒成立,求a的取值范围;
(2)解关于x的方程
(3)设函数,求时的最小值;

查看答案和解析>>

同步练习册答案