精英家教网 > 高中数学 > 题目详情
(本小题满分16分)
已知函数的导函数。
(1)若,不等式恒成立,求a的取值范围;
(2)解关于x的方程
(3)设函数,求时的最小值;
(1).    ⑵
 
本试题主要是考查了导数在研究函数中的运用,利用导数求解函数单调区间,以及解方程和运用导数求解分段函数的最值的综合运用。
(1)第一问根据已知条件,得到不等式的恒成立问题就是分离参数法,来求解参数的取值范围的转化思想的运用。
(2)第二问解方程关键是将原式整理为关于形如二次方程的形式,然后对于绝对值讨论去掉符号,得到方程的解。
(3)分段函数的最值,就是利用各段函数的单调性求解得到最值,再比较大小得到。
(1)因为,所以
又因为
所以时恒成立,因为
所以.……………………………………………………………………………4分
⑵ 因为,所以
所以,则. ……………7分
①当时,,所以
②当时,
所以
③当时,,所以.…………………………10分
⑶因为
①                若,则时,,所以
从而的最小值为;           ………………………………12分
②若,则时,,所以
时,的最小值为
时,的最小值为
时,的最小值为.…………………………………14分
③若,则时,
时,最小值为
时,最小值为
因为
所以最小值为.综上所述, …………………………………………16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题15分)已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,
在(-∞,-2)上为减函数.
(1)求f(x)的表达式;
(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;
(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当=时,求曲线在点(,)处的切线方程。
(2) 若函数在(1,)上是减函数,求实数的取值范围;
(3)是否存在实数若不存在,说明理由。若存在,求出的值,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知,函数
(Ⅰ)当时,
(ⅰ)若,求函数的单调区间;
(ⅱ)若关于的不等式在区间上有解,求的取值范围;
(Ⅱ)已知曲线在其图象上的两点)处的切线分别为.若直线平行,试探究点与点的关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数.
(Ⅰ)当时,求的单调递增区间;
(Ⅱ)若的图象恒在的图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值
范围;若不存在,说明理由;
(Ⅲ)如果对,总有,则称的凸
函数,如果对,总有,则称的凹函数.当时,利用定义分析的凹凸性,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点且与曲线相切,求直线的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若函数有最大值,求实数的值;
(2)若不等式对一切实数恒成立,求实数的取值范围;
(3)若,解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数上单调递增,则实数a的取值范围是       .

查看答案和解析>>

同步练习册答案