精英家教网 > 高中数学 > 题目详情
12.同时抛掷2枚均匀硬币100次,设两枚硬币都出现正面的次数为Y,则E(Y)=25,D(Y)=$\frac{75}{4}$.

分析 设两枚硬币都出现正面的次数为Y,则Y~B(100,$\frac{1}{4}$),由此能求出结果.

解答 解:同时抛掷2枚均匀硬币,两枚硬币都出现正面的概率p=$\frac{1}{2}×\frac{1}{2}=\frac{1}{4}$,
同时抛掷2枚均匀硬币100次,设两枚硬币都出现正面的次数为Y,
则Y~B(100,$\frac{1}{4}$),
∴E(Y)=$100×\frac{1}{4}$=25,
D(Y)=100×$\frac{1}{4}×\frac{3}{4}$=$\frac{75}{4}$.
故答案为:25,$\frac{75}{4}$.

点评 本题考查离散型随机变量的数学期望、方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.$\frac{{\sqrt{3}tan{{12}°}-3}}{{4{{cos}^2}{{12}°}sin{{12}°}-2sin{{12}°}}}$等于$-4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知随机变量X服从两点分布,且P(X=1)=0.6,设ξ=3X-2,那么P(ξ=-2)=0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果满足∠ABC=60°,AC=12,BC=k的△ABC有两个,那么k的取值范围是$12<k<8\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示的铁片由两部分组成,半径为1的半圆O及等腰直角△EFH,其中FE⊥FH.现将铁片裁剪成尽可能大的梯形铁片ABCD(不计损耗),AD∥BC,且点A,B在弧$\widehat{EF}$上.点C,D在斜边EH上.设∠AOE=θ.
(1)求梯形铁片ABCD的面积S关于θ的函数关系式;
(2)试确定θ的值,使得梯形铁片ABCD的面积S最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两人进行定点投篮游戏,投篮者若投中.则继续投篮,否则由对方投篮,第-次由甲投篮;已知每次投篮甲、乙命中的概率分别为$\frac{1}{3}$,$\frac{3}{4}$.
(1)求第三次由乙投篮的概率;
(2)在前3次投篮中,乙投篮的次数为ξ.求ξ的分布列、期望及标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.物体沿直线y=3x移动,以(0,0)为起点,时间t为参数,则物体的位置可用参数方程表示为:$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{10}t}\\{y=\frac{3\sqrt{10}}{10}t}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别是a,b,c,sinA,sinB,sinC成等差数列,且a=2c,则cosA=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用C(A)表示非空集合A中的元素个数,定义A*B=$\left\{\begin{array}{l}C(A)-C(B),当C(A)≥C(B)\\ C(B)-C(A),当C(A)<C(B)\end{array}$,若A={x|x2-ax-2=0,a∈R},B={x||x2+bx+2|=2,b∈R},且A*B=2,则b的取值范围(  )
A.b≥2$\sqrt{2}$或b≤-2$\sqrt{2}$B.b>2$\sqrt{2}$或b<-2$\sqrt{2}$C.b≥4或b≤-4D.b>4或b<-4

查看答案和解析>>

同步练习册答案