分析 利用等差数列的性质可得:2sinB=sinA+sinC,由正弦定理得2b=a+c,解得a=2c,b=$\frac{3}{2}$c,结合余弦定理即可解得cosA的值.
解答 解:在△ABC中,∵sinA,sinB,sinC成等差数列,可得:2sinB=sinA+sinC,
∴由正弦定理可得:2b=a+c,
又∵a=2c,可得:b=$\frac{3}{2}$c,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{9{c}^{2}}{4}+{c}^{2}-4{c}^{2}}{2×\frac{3c}{2}×c}$=$-\frac{1}{4}$.
故答案为:$-\frac{1}{4}$.
点评 本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| X | 0 | 1 |
| P | $\frac{a}{2}$ | $\frac{a^2}{2}$ |
| A. | 2 | B. | 2或0.5 | C. | 0.5 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com