精英家教网 > 高中数学 > 题目详情
2.用C(A)表示非空集合A中的元素个数,定义A*B=$\left\{\begin{array}{l}C(A)-C(B),当C(A)≥C(B)\\ C(B)-C(A),当C(A)<C(B)\end{array}$,若A={x|x2-ax-2=0,a∈R},B={x||x2+bx+2|=2,b∈R},且A*B=2,则b的取值范围(  )
A.b≥2$\sqrt{2}$或b≤-2$\sqrt{2}$B.b>2$\sqrt{2}$或b<-2$\sqrt{2}$C.b≥4或b≤-4D.b>4或b<-4

分析 由题意,可确定C(A)=2,可得C(B)=0或C(B)=4然后解方程|x2+bx+2|=2,讨论b的范围即可.

解答 解:∵A*B=2,C(A)=2
∴C(B)=0或4;
∴|x2+bx+2|=2,
当b=0时,方程只有1解,
故b≠0,∴x2+bx+2=2有2个解
故x2+bx+2=-2即x2+bx+4=0不同的解,
∴△=b2-4×4>0,
∴b>4或b<-4.
故选D.

点评 本题主要考查集合元素个数的判断,利用新定义,将集合元素个数转化为对应方程根的个数,是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.同时抛掷2枚均匀硬币100次,设两枚硬币都出现正面的次数为Y,则E(Y)=25,D(Y)=$\frac{75}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a、b、c依次是△ABC的角A、B、C所对的边,若$\frac{sinA•sinB}{sinC}$=$\frac{sinC}{cosC}$,且a2+b2=mc2,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知tanα=3,求$\frac{sinα-2cosα}{sinα+cosα}$的值;
(2)已知α为第二象限角,化简cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若复数z满足$\frac{z}{2+i}$=i2015+i2016(i为虚数单位),则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从参加乒乓球团体比赛的6名运动员中选出4名,并按排定的顺序出场比赛,有多少种不同的方法?(  )
A.360种B.240种C.180种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,2),若$\overrightarrow a$∥$\overrightarrow b$,则$\overrightarrow a$+$\overrightarrow b$等于(  )
A.(3,3)B.(6,3)C.(1,3)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三角形ABC的三内角A,B,C所对边的长分别为a,b,c设向量$\overrightarrow p$=(a+c,b),$\overrightarrow q$=(b-a,c-a),若$\overrightarrow p$∥$\overrightarrow{q}$,角A=$\frac{π}{6}$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{b_n}{1-a_n^2}$(n∈N*),则b2017=$\frac{2017}{2018}$.

查看答案和解析>>

同步练习册答案