精英家教网 > 高中数学 > 题目详情
18.下列函数中,既是偶函数又存在零点的是(  )
A.y=x2+1B.y=2|x|C.y=lnxD.y=cosx

分析 判断函数的奇偶性,然后判断函数是否有零点.

解答 解:y=x2+1是偶函数,但是没有零点;
y=2|x|,是偶函数,没有零点;
y=lnx是奇函数,不满足题意;
y=cosx是偶函数,有零点.
故选:D.

点评 本题考查函数的奇偶性,函数的零点定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合B={1},C={3},A∪B={1,2},则(  )
A.A∩B=∅B.A∩C=∅C.A∪C={1,2,3}D.A∪C={2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线方程是3x+2y=0,则它的离心率等于(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{\sqrt{13}}}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C的对边分别为a,b,c,满足acosB+bcosA=2ccosC.
(Ⅰ)求C;
(Ⅱ)若△ABC的面积为2$\sqrt{3}$,求c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某单位有840名职工,现采用系统抽样抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[61,140]的人数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.经过A(-3,1),且平行于y轴的直线方程为x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{4}$个单位后得到y=g(x)的图象,且y=g(x)在区间[0,$\frac{π}{4}$]内的最大值为$\sqrt{2}$.
(Ⅰ)求实数m的值;
(Ⅱ)在△ABC中,内角A、B、C的对边分别是a、b、c,若g($\frac{3}{4}$B)=l,且a+c=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i为虚数单位,复数z1=1+i,z2=1-i,则$\frac{z_1}{z_2}$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,M为C上位于第一象限的点,|MF1|=2,且MF1⊥y轴,MF2与椭圆C交于另一点N,若$\overrightarrow{M{F}_{2}}$=2$\overrightarrow{{F}_{2}N}$,则直线MN的斜率为(  )
A.-$\frac{\sqrt{5}}{2}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案