精英家教网 > 高中数学 > 题目详情

【题目】函数 图象上不同两点 处切线的斜率分别是 ,规定 为线段 的长度)叫做曲线 在点 之间的“弯曲度”,给出以下命题:
①函数 图象上两点 的横坐标分别为1和2,则
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点 是抛物线 上不同的两点,则
④设曲线 是自然对数的底数)上不同两点 ,且 ,若 恒成立,则实数 的取值范围是
其中真命题的序号为(将所有真命题的序号都填上)

【答案】②③
【解析】解:对于①,由

,故
。故①错误。
对于②,常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,故②正确;
对于③,设 ,又


,故③正确。
对于④,由 可得
恒成立可得 恒成立,
而当 时该式恒成立,故④错误。
综上可得②③正确。
故答案为:②③
本题主要考查函数的图像、抛物线的简单性质及函数的取值范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求函数v关于x的函数表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=4x的焦点为F,过点F作直线l与抛物线分别交于两点A,B,若点M满足 = + ),过M作y轴的垂线与抛物线交于点P,若|PF|=2,则M点的横坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x<1},B={x|3x<1},则(  )
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在 上的函数 ,且 恒成立.
(1)求实数 的值;
(2)若 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系 中,圆 的参数方程为 为参数, 是大于0的常数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为
(1)求圆 的极坐标方程和圆 的直角坐标方程;
(2)分别记直线 与圆 、圆 的异于原点的焦点为 ,若圆 与圆 外切,试求实数 的值及线段 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图直三棱柱 中, 为边长为2的等边三角形, ,点 分别是边 的中点,动点 在四边形 内部运动,并且始终有 平面 ,则动点 的轨迹长度为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育利研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内确实力企业纷纷进行海外布局,第二轮企业出海潮到来,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派上作的态度,按分层抽样的方式从70后利80后的员工中随机调查了100位,得到数据如下表:

愿意被外派

不愿意被外派

合计

70后

20

20

40

80后

40

20

60

合计

60

40

100

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(参考公式: ,其中
(1)根据查的数据,是否有 的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加,70后的员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.

查看答案和解析>>

同步练习册答案