精英家教网 > 高中数学 > 题目详情

设定函数 (>0),且方程的两个根分别为1,4。
(Ⅰ)当=3且曲线过原点时,求的解析式;
(Ⅱ)若无极值点,求a的取值范围。

(Ⅰ);(Ⅱ)

解析试题分析:由 得
因为的两个根分别为1,4,所以       (*)
(Ⅰ)当时,又由(*)式得
解得
又因为曲线过原点,所以

(Ⅱ)由于a>0,所以“在(-∞,+∞)内无极值点”等价于“在(-∞,+∞)内恒成立”。
由(*)式得

     得
的取值范围
考点:本题主要考查应用导数研究函数的单调性及极值,待定系数法。
点评:典型题,本题属于导数应用中的基本问题,(II)将函数问题转化成不等式恒成立问题,通过对方程实根的讨论及研究,确定得到参数的范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在极值,求的取值范围;
(2)若,问是否存在与曲线都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +1,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若p=2,求曲线处的切线方程;
(2)若函数在其定义域内是增函数,求正实数p的取值范围;
(3)设函数,若在[1,e]上至少存在一点,使得成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数

(1)若处取极值,求的值;
(2)设直线将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域(不包括边界),若图象恰好位于其中一个区域,试判断其所在区域并求出相应的的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若函数存在一个极大值和一个极小值,且极大值与极小值的积为,求
值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案