设定函数 (>0),且方程的两个根分别为1,4。
(Ⅰ)当=3且曲线过原点时,求的解析式;
(Ⅱ)若在无极值点,求a的取值范围。
科目:高中数学 来源: 题型:解答题
已知函数,,.
(1)若在存在极值,求的取值范围;
(2)若,问是否存在与曲线和都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若p=2,求曲线处的切线方程;
(2)若函数在其定义域内是增函数,求正实数p的取值范围;
(3)设函数,若在[1,e]上至少存在一点,使得成立,求实数p的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
函数;
(1)若在处取极值,求的值;
(2)设直线和将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域(不包括边界),若图象恰好位于其中一个区域,试判断其所在区域并求出相应的的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线在处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若函数存在一个极大值和一个极小值,且极大值与极小值的积为,求的
值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).
(1)求的极值;
(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com