精英家教网 > 高中数学 > 题目详情
6.设$\overrightarrow a$与$\overrightarrow b$是两个不共线向量,且向量$\overrightarrow a$+$λ\overrightarrow b$与-($\overrightarrow b-2\overrightarrow a$)共线,则λ=(  )
A.-2B.-1C.-0.5D.O

分析 向量$\overrightarrow a$+$λ\overrightarrow b$与-($\overrightarrow b-2\overrightarrow a$)共线,可得存在实数k使得向量$\overrightarrow a$+$λ\overrightarrow b$=k[-($\overrightarrow b-2\overrightarrow a$)],化为:(1-2k)$\overrightarrow{a}$+(k+λ)$\overrightarrow{b}$=$\overrightarrow{0}$,再利用共面向量基本定理即可得出.

解答 解:向量$\overrightarrow a$+$λ\overrightarrow b$与-($\overrightarrow b-2\overrightarrow a$)共线,
∴存在实数k使得向量$\overrightarrow a$+$λ\overrightarrow b$=k[-($\overrightarrow b-2\overrightarrow a$)],
化为:(1-2k)$\overrightarrow{a}$+(k+λ)$\overrightarrow{b}$=$\overrightarrow{0}$,
∵$\overrightarrow a$与$\overrightarrow b$是两个不共线向量,
∴$\left\{\begin{array}{l}{1-2k=0}\\{k+λ=0}\end{array}\right.$,解得λ=-0.5.
故选:C.

点评 本题考查了共面向量基本定理、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知a为实数,i为虚数单位,且复数(a-2)+(a-4)i为纯虚数,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=\sqrt{x+3}+\frac{1}{x+1}$的定义域是(  )
A.(-∞,-1)∪(-1,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$z={(\frac{1}{2})^{x+y}}$,其中x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≥0\\ 0≤x≤2\end{array}\right.$,则z的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论错误的是(  )
A.命题“若p,则q”与命题“若非q,则非p”互为逆否命题
B.命题p:?x∈R,e|x|≥1,命题q:?x∈R,x2+x+1<0,则p∨q为真
C.“若x为y=f(x)的极值点,则f′(x)=0”的逆命题为真命题
D.若“p且q”为真命题,则p、q均为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式:
(1)$\frac{3}{4}$,$\frac{2}{3}$,$\frac{7}{12}$,$\frac{1}{2}$,$\frac{5}{12}$,$\frac{1}{3}$,…;
(2)$\frac{\sqrt{5}}{3}$,$\frac{\sqrt{10}}{8}$,$\frac{\sqrt{17}}{15}$,$\frac{\sqrt{26}}{24}$,$\frac{\sqrt{37}}{35}$,…;
(3)2,1,$\frac{2}{3}$,$\frac{1}{2}$,…;
(4)$\frac{3}{2}$,$\frac{9}{4}$,$\frac{25}{8}$,$\frac{65}{16}$,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=25及点P(-3,1).
(1)试求经过点P与圆O相交弦长等于8的直线l的方程.
(2)若经过P点的直线l与圆O相交于点A、B,试求△ABO面积达到最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,若b=2$\sqrt{2}$,a=2,且三角形有解,则A的取值范围是(0,$\frac{π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设各项均为正数的数列{an}的前n项和为Sn,且满足2an+1=an+an+2,n∈N,a4a8=32,则S11的最小值(  )
A.22$\sqrt{2}$B.44$\sqrt{2}$C.22D.44

查看答案和解析>>

同步练习册答案