精英家教网 > 高中数学 > 题目详情
17.函数$f(x)=\sqrt{x+3}+\frac{1}{x+1}$的定义域是(  )
A.(-∞,-1)∪(-1,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

分析 根据函数f(x)的解析式,列出不等式组$\left\{\begin{array}{l}{x+3≥0}\\{x+1≠0}\end{array}\right.$,求出解集即可.

解答 解:∵函数$f(x)=\sqrt{x+3}+\frac{1}{x+1}$,
∴$\left\{\begin{array}{l}{x+3≥0}\\{x+1≠0}\end{array}\right.$,
解得x≥-3且x≠-1;
∴f(x)的定义域是[-3,-1)∪(-1,+∞).
故选:C.

点评 本题考查了利用函数解析式求定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f′(x)是一次函数,x2f′(x)-(2x-1)f(x)=2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将$a={0.5^{0.1}},b={log_4}0.1,c={0.4^{0.1}}$按由大到小的顺序排列为a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\frac{{{{(-1+\sqrt{3}i)}^3}}}{{{{(1+i)}^6}}}+\frac{-2+i}{1+2i}$的值是2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x,y满足条件:$\left\{\begin{array}{l}x-y+2≥0\\ 2x+y-5≥0\\ 2x-y-3≤0\end{array}\right.$,则z=3x+2y的最大值为(  )
A.8B.9C.28D.29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法中不正确的命题个数为(  )
①命题“?x∈R,x2-x+1≤0”的否定是“?x0∈R,x02-x0+1>0”;
②若“p∨q”为假命题,则p,q均为假命题;
③“三个数a,b,c成等比数列”是“b=$\sqrt{ac}$”的充要条件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直径AB=2圆上有长度为1的动弦CD,则$\overrightarrow{AC}•\overrightarrow{BD}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow a$与$\overrightarrow b$是两个不共线向量,且向量$\overrightarrow a$+$λ\overrightarrow b$与-($\overrightarrow b-2\overrightarrow a$)共线,则λ=(  )
A.-2B.-1C.-0.5D.O

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=2,an+1=$\frac{{{a}_{n}}^{2}+1}{2{a}_{n}}$(n∈N*).设bn=$\frac{{a}_{n}-1}{{a}_{n}+1}$.
(1)求证:bn+1=bn2
(2)求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案