精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知椭圆 的左,右焦点分别为 .是椭圆轴上方的动点,且的周长为16.

1)求椭圆的方程;

2)设点三边的距离均相等.

时,求点的坐标;

求证:点在定椭圆上.

【答案】(1) ;(2)①;②证明见解析.

【解析】试题分析:(1由题意可得的值,再由隐含条件求得,则椭圆方程可求;(2)①求出点坐标,设出的坐标,结合点三边的距离均相等列方程组求得点的坐标;②根据三角形面积以及椭圆的定义列方程组,可得 ,代入椭圆方程可得, 所以点在定椭圆上.

试题解析:(1)依题意, ,所以,从而 故椭圆方程为,(2时, 则直线的方程为: ,直线的方程为:

所以,且,其中,解得 ,所以点的坐标为

,则点三边的距离均为,由

,其中,所以,则直线的方程为: ,即 所以,且 化简得, ,解得

代入,得 所以点在定椭圆上.

【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程 ;③找关系:根据已知条件,建立关于的方程组;④得方程:解方程组,将解代入所设方程,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 上一点, 平面

(Ⅰ)证明: 平面

(Ⅱ)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的极值点的个数;

(Ⅱ)若对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥PABCD中,底面边长为2,侧棱长为MN分别为ABBC的中点,以O为原点,射线OMONOP分别为x轴、y轴、z轴的正方向建立空间直角坐标系.若EF分别为PAPB的中点,求ABCDEF的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,D

的中点,AC⊥平面BCC1B1

(Ⅰ)证明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的长;

(2)求三棱锥C-DB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考江苏卷】已知函数.设.

(1)求方程的根;

(2)若对任意,不等式恒成立,求实数的最大值;

(3)若,函数有且只有1个零点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在的展开式中,第5项的系数与第3项的系数之比是563

1)求展开式中的所有有理项;

2)求展开式中系数绝对值最大的项.

3)求的值.

查看答案和解析>>

同步练习册答案