【题目】在平面直角坐标系xOy中,已知椭圆: 的左,右焦点分别为, .点是椭圆在轴上方的动点,且△的周长为16.
(1)求椭圆的方程;
(2)设点到△三边的距离均相等.
①当时,求点的坐标;
②求证:点在定椭圆上.
【答案】(1) ;(2)①;②证明见解析.
【解析】试题分析:(1)由题意可得的值,再由隐含条件求得,则椭圆方程可求;(2)①求出点坐标,设出的坐标,结合点到三边的距离均相等列方程组求得点的坐标;②根据三角形面积以及椭圆的定义列方程组,可得, ,代入椭圆方程可得, 所以点在定椭圆上.
试题解析:(1)依题意, , ,所以,从而, 故椭圆方程为,(2)①当时, , 则直线的方程为: ,直线的方程为: ,
所以,且,其中,解得, ,所以点的坐标为;
②设,则点到△三边的距离均为,由,
得,其中,所以,则直线的方程为: ,即, 所以,且, 且, 化简得, ,解得,
将, 代入,得, 所以点在定椭圆上.
【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或 ;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.
科目:高中数学 来源: 题型:
【题目】随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱锥P-ABCD中,底面边长为2,侧棱长为,M,N分别为AB,BC的中点,以O为原点,射线OM,ON,OP分别为x轴、y轴、z轴的正方向建立空间直角坐标系.若E,F分别为PA,PB的中点,求A,B,C,D,E,F的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面为矩形,D为
的中点,AC⊥平面BCC1B1.
(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的长;
(2)求三棱锥C-DB1C1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016高考江苏卷】已知函数.设.
(1)求方程的根;
(2)若对任意,不等式恒成立,求实数的最大值;
(3)若,函数有且只有1个零点,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在的展开式中,第5项的系数与第3项的系数之比是56:3.
(1)求展开式中的所有有理项;
(2)求展开式中系数绝对值最大的项.
(3)求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com